Tirasemtiv Increases Skeletal Muscle Performance in SMA Mice

Darren T. Ivwee, Ph.D., Leo H. Kim, B.S., Carolyn Chrzanowski, B.A.; W. David Arnold, Ph.D.; Nancy Kuntz, M.D., Christine J. DiDonato, Ph.D.; Fady I. Malik, M.D., Ph.D.; and Jeffrey R. Jasper, Ph.D.

Cytokinetics, Inc., South San Francisco, CA, Lake Children’s Hospital of Chicago, Chicago, IL, Department of Neurology and Physical Medicine, The Ohio State University Columbus, OH.

INTRODUCTION

- The majority of new therapeutic approaches for spinal muscular atrophy (SMA) focus on increasing SMN2 levels
- Directly activating fast skeletal troponin may provide a novel, and potentially complimentary, method of improving muscle function in SMA
- To examine this hypothesis, we tested the fast skeletal troponin activator, *tirasemtiv*, in two different SMA mouse models that resemble the Type II/III intermediate and Type IV adult-onset human condition.

EXPERIMENTAL AIMS FOR TIRASEMTIV IN SMA RESEARCH

Our specific experimental aims are:

- Determine the effect of *tirasemtiv* on skeletal muscle strength in mouse models of SMA
- Determine the effect of *tirasemtiv* on muscle performance in mouse models of SMA

RESULTS

Characterization of SMA Mouse Models

- "Intermediate" SMA mice
 - Weakness by 3 months of age
 - Muscle atrophy
 - Increased fasciculations
 - Gross progressive loss of function across species

- "Adult-onset" SMA mice
 - Weakness by 6 months of age
 - Reduced number of motor units
 - Contractures with significant muscle atrophy
 - More profound atrophy, function is most affected in lower motor neurons/related spinal cord changes

Tirasemtiv Improves Strength and Endurance in a Mouse Model of SMA

Grip Strength Apparatus

- Healthy mice and SMA mice are lowered onto the triangle bar until they grab the bar
- Mice are pulled gently by the tail until they release the bar
- The grip meter measures how much force it takes to pull the mouse from the triangle bar

Grid Cage Hang Apparatus

- The mice hang on as long as they can
- The grid is then inverted
- The mice hang on as long as they can

Conclusions

- *Tirasemtiv* is unique because it directly activates skeletal muscle and could be of benefit to patients with a wide variety of disorders characterized by muscle weakness and fatigue
- In this current study, *tirasemtiv* improved submaximal calf muscle strength, grip strength and grid hang time in SMA mice that resembled the Intermediate and Adult-onset human condition
- Significance of the Project:
 - Current treatment of SMA consists primarily of supportive measures. Thus, there remains a significant unmet medical need for a therapy that can improve muscle function, including respiratory muscle function
 - Based on our current results in SMA mouse models, *tirasemtiv* may ameliorate symptoms associated with muscle weakness in patients with SMA and thereby improve self-care abilities and quality of life