A MULTIPLEXED AND AUTOMATED IMAGING ASSAY OF CARDIAC MYOCYTE CONTRACTILITY

D Lenzi, A Fritsch, G Alexander, R Hansen, G Cong, W Zink, G Godinez, A Pham, J Trautman, DW Pierce, F Malik, JT Finer

Cvtokinetics, Inc. South San Francisco, CA

47
29
50
40
8
42
32

MEC (120%) <u>Amplitude</u>	MEC (5%) <u>Diastolic</u>
2.1 nM	>20 nM
5.4	>20
3.9	>20

CONCLUSIONS

- We have developed an automated assay platform that can measure contractility changes in hundreds of cardiac myocytes per hour.
- Six-point dose-responses for a compound can be acquired wit an hour, with 10 80 cells per
- Even with potent compounds such as isoproterenol, contractility responses (for all metrics) are broadly distributed.
- Response distributions shift with compound concentration, which is reflected by the Q75.
- MECs summarize dose-response curves.
- The platform may be adaptable to other assays, cell types, and imaging modalities.

ACKNOWLEDGEMENTS

