Characterization of the Cardiac Myosin Inhibitor CK-3773274: a Potential Therapeutic Approach for Hypertrophic Cardiomyopathy

Cytokinetics Inc, South San Francisco, CA, USA

ABSTRACT

Inhibition of the cardiac sarcomere may be essential for the treatment of cardiomyopathies and cardiac hypertrophy. Here, we evaluated CK-3773274, a novel cardiac myosin inhibitor that reduces cardiac contractility, in healthy adult rat ventricular cardiomyocytes and in a rat model of cardiomyopathy. CK-3773274 significantly reduced force generation in a dose-related manner in a buffer containing 200 mM potassium, which approaches the potassium levels found in mammalian ventricles. CK-3773274 also slowed the rate of rise of tension, which is indicative of a reduction in the rate of actin-activated ATPase activity. Moreover, CK-3773274 decreased fractional shortening in a dose-related manner in a rat model of cardiomyopathy, consistent with its in vitro effects on cardiac contractility. These results suggest that CK-3773274 may be a potential therapeutic candidate for the treatment of cardiomyopathies and cardiac hypertrophy.

RESULTS

A. Characterization of the Cardiac Myosin Inhibitor CK-3773274:

1. **Calcium Transients**

 - Measurement of Cardiomyocyte Contractility and Calcium Transients
 - Adult rat ventricular cardiomyocytes were isolated and loaded with Fluo-4 AM (2 µM) for 45 min at 37°C in a buffer consisting of 25 mM HEPES, 135 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, and 10 mM D-glucose (pH 7.4).
 - Calcium transients were recorded at 30 Hz using a inverted microscope equipped with a water immersion objective (60X, 1.25 NA) and a high-speed cooled charge-coupled device camera (Hamamatsu, ORCA-Flash 4.0). Fluorescence was excited with a 488-nm laser, and emission was detected between 500 and 600 nm (bandwidth: 25 nm).
 - Changes in FL were calculated as the percentage change from baseline using the equation (FL - FL0)/FL0, where FL is the fluorescence intensity at the current time point and FL0 is the baseline fluorescence intensity.

2. **ATPase Assays**

 - Myosin ATPase activity was measured using a pyruvate kinase/lactate dehydrogenase-coupled assay in a buffer consisting of 100 mM HEPES, 50 mM KCl, 1 mg/mL bovine cardiac actin, 0.2% bovine serum albumin, 0.2 mM ATP, 10 mM DTT, and 1% DMSO. The ATPase activity was normalized to control (100%).

3. **Blebbistatin Binding Assays**

 - Binding of (-)-blebbistatin to bovine cardiac myosin subfragment-1 was measured using intrinsic tryptophan fluorescence at 298 nm and an excitation wavelength of 291 nm. The data were fitted using a four-parameter dose response equation (95% CI): IC₅₀ = 4.1 ± 0.7 µM.

4. **CK-3773274**

 - CK-3773274 (40 μM) significantly reduced force generation (FS) in a dose-related manner in a buffer containing 200 mM potassium. Relevant data are presented in Table 1.

Table 1. | CK-3773274 | FS (% of Control) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100 ± 3.3</td>
</tr>
<tr>
<td>10 μM</td>
<td>72 ± 5.2</td>
</tr>
<tr>
<td>25 μM</td>
<td>55 ± 4.2</td>
</tr>
<tr>
<td>50 μM</td>
<td>32 ± 2.9</td>
</tr>
<tr>
<td>100 μM</td>
<td>15 ± 1.8</td>
</tr>
</tbody>
</table>

SUMMARY

In conclusion, CK-3773274 is a novel cardiac myosin inhibitor that selectively inhibits cardiac myosin ATPase activity and decreases myocardial contractility. No personal information is stored.

REFERENCES