BACKGROUND
• About one-third of patients with hypertrophic cardiomyopathy (HCM) have non-obstructive HCM (nHCM).
• There is limited evidence on the impact of symptoms and complications on the logistic and economic burden of patients with nHCM.

HYPOTHESIS
• The presence of symptoms and complications increases the logistic and economic burden of nHCM.

METHODS
• We used Symphony medical and pharmacy claims data from 2016 to 2021 to identify (by ICD-10 code) adult patients in the USA with symptomatic (SYMP) or asymptomatic (ASYMP) nHCM (Figure 1).
• SYMP was defined as fatigue, chest pain, syncope, dyspnea, heart failure (HF), or palpitations within 3 months of index date. Complications included atrial fibrillation (AF)/flutter, ventricular fibrillation/ventricular tachycardia (VT), supraventricular tachycardia, stress cardiomyopathy, HF, or heart transplant.
• We assessed pre- vs post-complication resource use and charges (per-person per-year [PPPY], in US$) for 18,011 patients with nHCM.

RESULTS
• In SYMP vs ASYMP nHCM (N=9600 vs 8411), mean age was 63 ± 14 vs 62 ± 16 years (P=0.001) and 49% vs 45% were female (P=0.001) (Table 1).
• The incidence of complications was 0.96 vs 0.39 per 1000 patient-years (P<0.001) (Figure 2).
• In SYMP nHCM, complications increased inpatient (IP) admissions and all-cause charges (P<0.001) and all-cause complications increased 22,711 to $66,553 PPPY; P=0.006), without altering outpatient (OP) visits or charges (P=0.438, Figure 3A–B, Figure 4).

CONCLUSIONS
• In this study, patients with SYMP vs ASYMP nHCM were older, predominantly female, and had higher rates of complications.
• Complications were associated with increased IP admissions and charges for SYMP nHCM, and increased OP admissions and charges for ASYMP nHCM.
• Our data highlight the value of complication prevention, especially for patients with ASYMP nHCM, for whom complications may steeply increase charges.

Table 1. Baseline characteristics of nHCM cohort

<table>
<thead>
<tr>
<th></th>
<th>SYMP</th>
<th>ASYMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>62.7 (14.3)</td>
<td>61.5 (15.6)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>4746 (48.4)</td>
<td>3807 (49.3)</td>
</tr>
<tr>
<td>Baseline comorbidities, n (%)</td>
<td>1117 (11.6)</td>
<td>504 (6.0)</td>
</tr>
</tbody>
</table>

Figure 1. Study design

Figure 2. Incidence rate of complications for SYMP vs ASYMP nHCM cohorts

Figure 3. HCRU and medical charges before and after complications in SYMP and ASYMP nHCM cohorts

Figure 4. Total medical charges in SYMP and ASYMP nHCM cohorts

Limitations
• The findings presented in this poster are derived from various unadjusted analyses. Adjusting for variables such as sex, age, and comorbidities could potentially impact these results.

Reference

Disclosures
This study was funded by Cytokinetics, Incorporated. MB: Employee of and owns stock in Cytokinetics, Incorporated. SA, MC, DP, BH, and TA, have no conflicts of interest to disclose.

Acknowledgements
External support: the preparation of this poster was provided by Susan Tan, PhD, on behalf of St. George Scientific Solutions, and was funded by Cytokinetics, Incorporated.

Abbreviations
AF, atrial fibrillation; AFL, atrial flutter; CVA, cerebrovascular accident; SC, stress cardiomyopathy; SVT, supraventricular tachycardia; VT, ventricular fibrillation.

Table 1. Baseline characteristics of nHCM cohort

<table>
<thead>
<tr>
<th></th>
<th>SYMP</th>
<th>ASYMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>62.7 (14.3)</td>
<td>61.5 (15.6)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>4746 (48.4)</td>
<td>3807 (49.3)</td>
</tr>
<tr>
<td>Baseline comorbidities, n (%)</td>
<td>1117 (11.6)</td>
<td>504 (6.0)</td>
</tr>
</tbody>
</table>

Figure 2. Incidence rate of complications for SYMP vs ASYMP nHCM cohorts

Figure 3. HCRU and medical charges before and after complications in SYMP and ASYMP nHCM cohorts

Figure 4. Total medical charges in SYMP and ASYMP nHCM cohorts

Limitations
• The findings presented in this poster are derived from various unadjusted analyses. Adjusting for variables such as sex, age, and comorbidities could potentially impact these results.

Reference