Racial and Ethnic Differences in Cardiovascular Outcomes in Patients Diagnosed with Hypertrophic Cardiomyopathy
Nosheen Reza1, Kirti Batra2, Qiana Amos2, Ami Bukiema3, Amy Anderson2, Michael Butzner3, Sanatan Shreasy3, Anjali Owens1
1Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; 2Optum, Eden Prairie, MN, USA; 3Cytokinetics, Incorporated, South San Francisco, CA, USA

BACKGROUND
• Although clinical characteristics and treatment of hypertrophic cardiomyopathy (HCM) are well documented, it is imperative to investigate the impact of sociodemographic factors on cardiovascular (CV) outcomes in patients with HCM.1–3
• Prior studies investigating the association between race/ethnicity and CV outcomes in patients with HCM have been limited in size.
• This study investigated these associations in a large national cohort of patients with HCM.

HYPOTHESIS
• Differences exist in CV outcomes and all-cause mortality by race/ethnicity in patients diagnosed with HCM.

METHODS

Study Design
• Retrospective cohort study of adult patients with HCM in Optum’s Market Clarity database from January 1, 2013, through December 31, 2021 (index date = first HCM diagnosis).
 – Patients with ≥2 medical claims with a diagnosis code for HCM (ICD-9: 425.1, 425.11, or 425.12; ICD-10: I42.1 or I42.2) in any position on different dates of service ≥30 days apart.
 – 6 months of baseline and ≥6 months of follow-up continuous enrollment, and no evidence of Fabry disease or amyloidosis during the study period.

Study Outcomes
• Clinical characteristics, CV outcomes (atrial fibrillation, stroke, heart failure, ventricular arrhythmia, stress cardiomyopathy, sudden cardiac arrest, and heart transplant), and mortality.

Statistical Methods
• Event rates per 100,000 person-years to estimate risk of CV outcomes. Kaplan-Meier analysis to evaluate risk of mortality. Comparison of outcomes by race/ethnicity; all tests were 2-sided α=0.05.

RESULTS
• A total of 24,586 study-eligible patients with HCM were identified after the patient selection criteria were applied.
 – The mean ± SD age was 61.3 ± 14.9 years; mean follow-up was 43.9 ± 28.9 months, and 49.0% were female (Table 1).
 – Baseline characteristics by race/ethnic characteristics are shown (Figure 1).
• Compared with White patients, Black patients had higher rates of stroke (rate ratio [RR] 1.78; P<0.001), heart failure (RR 1.59; P<0.001), ventricular tachycardia (RR 1.16; P<0.001), and sudden cardiac arrest (RR 1.72; P<0.001) (Figure 2).
• The 3-year cumulative all-cause mortality rate was higher among Black patients (8.01%) and lower among Asian (3.84%) and Hispanic (4.06%) vs White (7.43%) patients (Figure 3; P<0.001).

Table 1. Patient demographics and clinical characteristics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total (N=24,586)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (continuous)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>18–39</td>
<td>2176 ± 8.85</td>
</tr>
<tr>
<td>40–54</td>
<td>4984 ± 20.19</td>
</tr>
<tr>
<td>55–74</td>
<td>5909 ± 22.41</td>
</tr>
<tr>
<td>75+</td>
<td>5241 ± 21.32</td>
</tr>
<tr>
<td>Sex, male</td>
<td>12,537 ± 9.99</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td>14,421 ± 9.99</td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>2270 ± 9.99</td>
</tr>
<tr>
<td>Black/African American, non-Hispanic</td>
<td>3659 ± 9.99</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2270 ± 9.99</td>
</tr>
<tr>
<td>Unknown/missing</td>
<td>3356 ± 9.99</td>
</tr>
</tbody>
</table>

Hypertrophic cardiomyopathy
• Compared with White patients, non-Hispanic Black patients with HCM had the highest rate of adverse CV outcomes and all-cause mortality, whereas Asian and Hispanic patients had lower rates over the follow-up period.
• These results highlight an urgent need to identify and address drivers of race/ethnicity-based disparities in HCM.

CONCLUSIONS

REFERENCES

ACKNOWLEDGMENTS
This study was funded by Cytokinetics, Incorporated. MB received consulting/advisory fees from Cytokinetics, Bristol Myers Squibb, and Ablynx; and research support from Cytokinetics, Bristol Myers Squibb, and MyoKardia. AE received research support from TEVA, Astellas, Nutricia, Cytokinetics, and MyoKardia. DJF received research support from Cytokinetics, Astellas, and MyoKardia. All other authors have no disclosures.

The authors thank Anuj Gupta, Tom Horstman, and Sahil Kathuria for assistance with programming and analysis, and Daryl Truong for medical writing support. Editorial support for the preparation of this poster was provided by Engage Scientific Solutions, and was funded by Cytokinetics, Incorporated.

This study was sponsored by Cytokinetics, Incorporated, South San Francisco, CA, USA.

Presented at the American College of Cardiology (ACC) Annual Scientific Meeting | Atlanta, GA, USA | April 6–8, 2024