

Discovery of *Aficamten (CK-274)*: Next-in-class Cardiac myosin inhibitor (CMI) for obstructive Hypertrophic Cardiomyopathy (oHCM)

Drug Discovery Nexus San Diego 2024

May 8th, 2024

Grace Chuang

Diseases Associated with Reduced and Increased Cardiac Contractility

Hypothesis: Normalization of Contractility May Treat the Root Cause of the Disease

HFrEF = Heart Failure with Reduced Ejection Fraction HFpEF = Heart Failure with Preserved Ejection Fraction HCM = Hypertrophic Cardiomyopathy

Sarcomere Directed Drug Development

The sarcomere is a molecular structure found in skeletal and cardiac muscle that enables myocytes to contract and generate force

Cardiac Sarcomere Inhibition Hypothesis: Direct inhibition of cardiac contractility may be a viable approach to treat patients with HCM by restoring the proper degree of contractility within the sarcomere

Hypertrophic Cardiomyopathy (HCM)

A disease of sarcomere proteins

• Mutations in the sarcomere can cause hypercontraction, leading to abnormal growth (pathological hypertrophy) of the heart

Significant Unmet Need in Hypertrophic Cardiomyopathies (HCM)

Current therapies do not target underlying disease

HCM is an inherited cardiovascular disease

- 1 in 500 have genetic mutation
- 1 in 3200 have HCM
- Subset of patients have progressive symptoms, atrial fibrillation, stroke, sudden death

Surgical intervention not permanent solution

- Invasive therapy to reduce septal thickness is effective to provide immediate symptom relief
- Surgical myectomy
 - Cutting away the thickened heart muscle
- Alcohol septal ablation
 - Alcohol induced muscle cell death

Current medical therapy does not target underlying disease

- Indirect mechanisms of action with systemic side effects
- Variable efficacy, often inadequate

Muscle Contractility

Cytokinetics

Drug Discovery Nexus San Diego | 05.08.24

Assay Systems for Muscle Contractility Lead Optimization

A Next-in-Class Cardiac Sarcomere Inhibitor (CSI) Finding a next-in-class compound to expand the utility of this MOA

First-in-Class CSI inhibitor, *mavacamten*, has a long human $t_{1/2}$

beyond

Cvtokinetics

- ✓ Echocardiography to assess the relationship of conc. vs fractional shortening (FS)
- ✓ Shallow dose response curve *in vivo* with larger PD window $(IC_{50}/IC_{10})^4$

1. MP Grillo, *et.al. Xenobiotica*, 2019; *49*, 718-733; . 2. Myokardia S-1 SEC filling September 28, 2015. 3. SB Heitner, *et.al. Ann. Intern. Med.* 2019, Jun4; *170 (11)*, 741-748. 4. IC₅₀/ IC₁₀= conc. 50% reduction in fractional shortening (FS) / conc. 10% reduction in fractional shortening (FS) measured in rat models

Screening Hit 1: Properties and Direct Inhibition of Cardiomyocyte Contractility

- 1. CDMF Ca75: cardiac myofibril ATPase assay with Ca concentration @ 75% of the maximum contraction
- 2. SMM: smooth muscle myosin
- 3. LE: ligand efficiency based on number of heavy atoms
- 4. cLogP: determined using ACD calculator
- 5. ER microsomal extraction ratio (ER = (Clint)/(Clint + hepatic blood flow), h=human r=rat

Drug Discovery Nexus San Diego | 05.08.24

Cvtokinetics

Breakthrough Modification to Incorporate H-Bond interaction *X-ray Co-crystal of Blebbistatin reveals a key H-bond interaction*

Blebbistain, a pan myosin inhibitor

- Inhibits myosin ATPase activity
- Binds in allosteric site of ATP domain
- Tool compound used as control

Comp **2** docked into a similar binding pocket with cardiac myosin

Reframe the Linker

- Improved <u>cardiac potency</u> (IC₅₀ = 1.0 μM)
- Removed <u>aniline</u> moiety

H-Bond donor incorporation

- lead to ~3X potency improve
- opportunity to optimize drug-like properties quickly

Subtle Differences in ADME Properties Linked to Stereochemistry In vitro vs in vivo disconnect between enantiomers

Cmpd	Chirality	R	СDMF IC ₅₀ (µМ)	СDMF IC ₁₅ (µМ)	CL _{int} (r) ¹ (mL/min/kg)	CL _{int} (h) ¹ (mL/min/kg)	CL (r) ² (mL/min/kg)	CL _u (r) ³ (mL/min/kg)	cLog P ⁴	PPB (r)⁵ (% free)
3	R		3.5	1.0	< 21	<11	7.6	156.3	2.4	7.7
4	S		>39	>39	25.3	36.4	40.1	401	2.4	10
5	R		4.9	1.4	<21	<11	13.9	55.8	0.7	25
6	S		>39	>39	40.3	<11	83.3	391.8	0.7	21
7	R	N-	4.4	1.2	<21	<11	2.1	32.3	1.5	6.5
8	S		>39	>39	<21	<11	57.7	395.2	1.5	15

1.Cl_{int} = Intrinsic clearance in rat (r) microsome, human (h) rat (r); 2. CL = *in vivo* rat clearance dosed at 0.5 mg/kg for **7** and **8** and dosed at 2.0 mg/kg for **3-6**; 3. CL_u = unbound *in vivo* clearance in rat (r) (*in vivo* rat clearance / free fraction in rats); 4. cLogP: determined using ACD calculator; 5. PPB = plasma protein binding, % unbound, rat (r).

- Stereochemical preference
 - Preferred *R*-isomer confirmed through synthesis
 - No inhibition observed with S-isomer at high end of concentration (40 μ M)
 - Eudysmic ratio is > 40x based in IC_{15}
 - Generally lower intrinsic CL observed in *in vitro rat* microsomal system with *R* isomer
 - *R* isomer demonstrated a much lower clearance in *in vivo* system

Fine Tuning Pharmacokinetic Properties and Potency Pyrazole stands out with balance of in vitro and in vivo PK properties

- R₁ modification
 - Et, cPr, and iPr all within desired potency range
 - cPr lead to long $t_{1/2}$ observed in **21**
- R₂ modification
 - Tolerance for wide range of 5-and
 6-membered heterocycles
 - Various CI, $t_{1/2}$, and %F observed
 - Cmpd **11** has the best overall balance in PK profile

Cmpd	R ₁	R ₂	СDMF IC ₅₀ (µМ)	Rat, CL ¹ (mL/min/kg)	Rat, t _{1/2} 2 (hour)	Rat %F³	CL _{int} (r) ⁴ (mL/min/kg)	CL _{int} (h) ⁴ (mL/min/kg)	PPB (r , h) ⁵ (% free)
11	Et		1.4	3.1	2.5	59	<21	<11	98 / 90
19	Et	N	1.7	21.4	4.1	13	<21	<11	95 / 82
20	Et		0.9	19.5	5.9	53	<21	<11	89 / 71
21	cPr	N=N N_N	1.0	5.2	17.8	100	<21	<11	91 / 83
22	iPr	N=N N_N	1.9	15.7	4.6	52	<21	<11	93 / 84
23	Et	O N	0.8	39.7	14.7	0	>124	<11	98 / 90
24	Et	NH	1.1	62.5	1.4	10	66	<11	80 / 80
25	Et	N	1.2	13.0	3.5	32	0.3	<11	98 / 92
26	Et	N N	1.2	43.8	6.5	16	-	<11	- / 69
27	Et	N N	1.8	20.2	5.9	26	24	<11	95 / 91

1. Rat Cl = *in vivo* rat clearance dosed at 1 mg/kg; Cl_{int} = Intrinsic clearance in rat (r); 2. Rat t_{1/2} = *in vivo* half-life in rat iv experiment; 3. Rat F = *in vivo* bioavailability for compounds dosed iv and po at 1 mg/kg except compound 11 and 20, which was dosed po at 2 mg/kg, and compound22, which was dosed po at 6 mg/kg. 4. Cl_{int} = Intrinsic clearance in rat (r) microsome, h=human r=rat; 5. PPB = plasma protein binding, % unbound, rat (r), human (h).

Efficacy Demonstrated with *in vivo* Echocardiography Measurement Wide PD Window in Healthy Rat and Dog Models with Aficamten

	IC ₁₀ (μΜ) _{total} *	ΙC ₅₀ (μΜ) _{total} *	IC ₅₀ /IC ₁₀ *
mavacamten	0.6	1.7	2.8
aficamten	0.8	7.9	9.9

Dog0.01780.23113.0Rat0.01440.1429.9

* IC₅₀/ IC₁₀: Pooled concentration for 50%/10% reduction of FS (fractional shortening) in normal Sprague Dawley rat or Beagle Dog

Shallow exposure-response relationship of *Aficamten* in rats and dogs

Aficamten Accomplished Optimization Objectives

Objectives:

- ✓ Predicted human $t_{1/2}$ for *qd* dosing and reach steady state within 2 weeks
- ✓ No substantial CYP induction or inhibition (human hepatocytes / microsomes)
- ✓ Large therapeutic index across pre-clinical species with clear PK/PD relationship

	Assav	Parameters		
	Assay	Aficamten	Mavacamten	
<i>in vitro</i> pharmacology	Bovine Cardiac Myofibril Ca75 IC_{50} (µM)	1.26 (1.20-1.33) ^{1,2}	0.60 (0.54-0.67) ¹	
in vivo nhormocology	IC ₁₀ (μM) ³	0.8	0.6	
III VIVO pharmacology	IC ₅₀ / IC ₁₀ ³	9.9	2.8	
Human PK projection	Human t _{1/2} projected (days) (Human t _{1/2} actual)	2.8 ⁸ (3.4) ⁷	9 ⁶ (7-9) ^{4,5}	
	CYP450 IC ₅₀ (μM) (Time-dependent inhibition)	IC ₅₀ > 30 ⁹ (None)	$IC_{50} > 30^{6,9}$	
CYP Profile	CYP450 Induction, EC ₅₀ (µM) ¹⁰	No substantial induction up to 25 μM	2.2 ± 0.4 / CYP3A4 ⁶ 5.1 ± 0.2 / CYP2B6 ⁶	

Mavacamten

Aficamten showed no notable off-target effects with in vitro safety pharmacology screening

1. Cytokinetics data on file. Bovine cardiac myofibrils assayed at 75% of max Ca-dependent activation. Mean values (95% confidence intervals). 2. JJ Hartman, *et al.* Poster# 2912 presented at 64th Biophysical Society Annual Meeting, February 19th, 2020. 3. Compounds were dosed orally to Sprague Dawley rats and compound effect assessed by echocardiography. A reduction in a measure of cardiac function (fractional shortening [FS]) was quantitated alongside plasma concentrations to calculate the inhibitory concentration at a 10% (IC₁₀) and 50% (IC₅₀) reduction in FS, IC₅₀/ IC₁₀ 4. Myokardia S-1 SEC filling September 28, 2015. 5. SB Heitner, *et.al. Ann. Intern. Med.* 2019, Jun4; *170 (11)*, 741-748. 6. MP Grillo, *et.al. Xenobiotica* 2019, *49*, 718-733. 7. LA Robertson, *et al.* Poster #210 presented at the 23rd HFSA Annual Scientific Meeting, September 13–16, 2019, Philadelphia, PA, USA. 8. P Cremin, *et al.* Poster # 887215 presented at AAPS annual meeting, Atlanta, Georgia, October 28-November 5, 2021. 9. Mavacamten include CYPs 1A2, 2B6, 2C9, 2C19, 2D6, 3A4 and 3A5; *aficamten* include 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 10. The potential to induce CYP1A2, CYP2B6 and CYP3A4 was tested *in vitro* in cryopreserved palatable human primary hepatocytes from three separate donors using mRNA level as the end point.

Aficamten Has a Similar PD Window in a Genetic HCM Mouse Model

Aficamten decreased fractional shortening in a dose-related fashion in WT and R403Q HCM mice

- A dose of 0.25-1.5 mg/kg is sufficient to determine an IC_{50}/IC_{10} window
- The fractional shortening response to aficamten is the same in WT and R403Q mice

Aficamten Reduced FS* and LVOT* Obstruction in a Dose-dependent Manner in A31P HCM Maine Coon Cats¹

 A31P HCM cats exhibit fractional shortening (> 50%) and LVOT peak gradient (>10 mm Hg) values that are above the normal range in cats

* FS= fractional shortening; LVOT left ventricular outflow tract

UC Davis / U Arizona

1. MS Oldach, et al. Poster presented at AHA Scientific Sessions 2020, Virtual Congress November 13-17th, 2020.

SAD & MAD Results Support Progression to Phase 2

Preclinical data translated to healthy participants

MAD PK: Steady-State Achieved After 14 Days of Dosing

Shallow Exposure-Response Relationship Observed Pre-clinically Appears to Have Translated to Humans, May Enable Flexible Dose Optimization in Humans

PK/PD Relationship of *Aficamten* for Ejection Fraction (LVEF)

Data points represent mean ± standard error of the mean. d, day; qd, once daily. LA Robertson, et al. Poster #210 presented at the 23rd HFSA Annual Scientific Meeting, September 13–16, 2019, Philadelphia, PA, USA.

Topline Results of Phase 2 REDWOOD-HCM Trial

High response rates on treatment with aficamten as compared to placebo, Cohorts 1 & 2

Drug Discovery Nexus San Diego | 05.08.24

Washout

Washout

Cytokinetics

Treatment

Weeks

Treatment

Weeks

Open Label Extension Study FOREST-HCM

Substantial and sustained reduction in peak resting and Valsalva LOVT-G

[†]P<0.001; [‡]P<0.0001.

Core-laboratory and site-interpreted mean (SD) left ventricular outflow tract (LVOT) gradient (A) at rest and (B) with Valsalva. Boxed brown arrows represent change from baseline in site-read echo values. Red dashed line represents threshold for definition of obstruction or designation of severe obstruction.

Treatment with *aficamten* was associated with rapid, substantial, and sustained improvements in echocardiographic hemodynamics paralleled by improvements in NYHA class and NT-proBNP

Conclusion and Summary

- Our goal to provide a next-in-class cardiac sarcomere inhibitor was met
 - Derived a unique NCE from singleton hit
 - Observed shallow exposure-response relationship in pre-clinical species (rat and dog) and in humans
 - Presented favorable ADME properties with no CYP induction or inhibition
 - Presented no notable off-targets effects with in vitro safety pharmacology screening
- Human clinical trial status of aficamten
 - Phase 1 data supported progression of aficamten to a placebo-controlled, double-blind Phase 2
 - Phase 2 trial, REDWOOD-HCM completed and high response rate observed with aficamten dose group
 - Open label long term extension trial, FOREST-HCM demonstrates a rapid, substantial, and sustained improvements in echocardiographic hemodynamic paralleled by improvement in NYHA class and NTproBNP
 - Phase 3 trial, SEQUOIA-HCM met the primary and all secondary endpoints with p values < 0.001
 - Additional Phase 3 trial, MAPLE-HCM is on-going to evaluate aficamten compared to metoprolol succinate in patients with symptomatic oHCM
 - Additional Phase 3 trial, ACACIA-HCM is on-going to evaluate aficamten in patients with symptomatic nHCM

Acknowledgements

All current and former employees of Cytokinetics for the collaborative effort and patients for the inspiration

"Alone we can do so little; together we can do so much"

Attributed to Helen Keller

