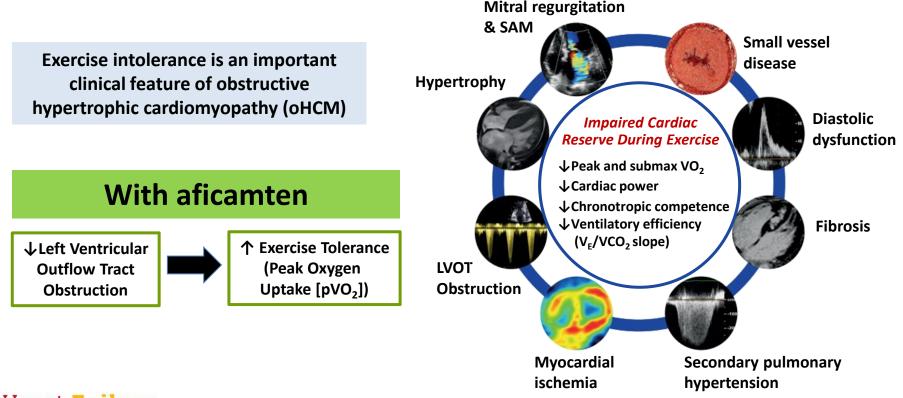
Enhancing Exercise Response in Obstructive Hypertrophic Cardiomyopathy

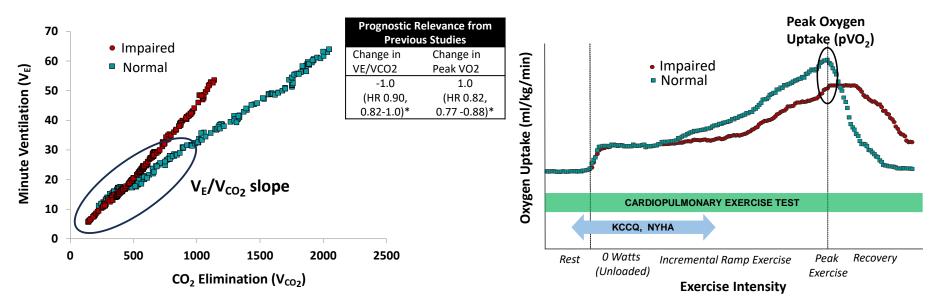
SEQUOIA

Insights into the Impact of Aficamten on Patients from SEQUOIA-HCM


Gregory Lewis, MD, on behalf of the SEQUOIA-HCM Investigators

May 13, 2024

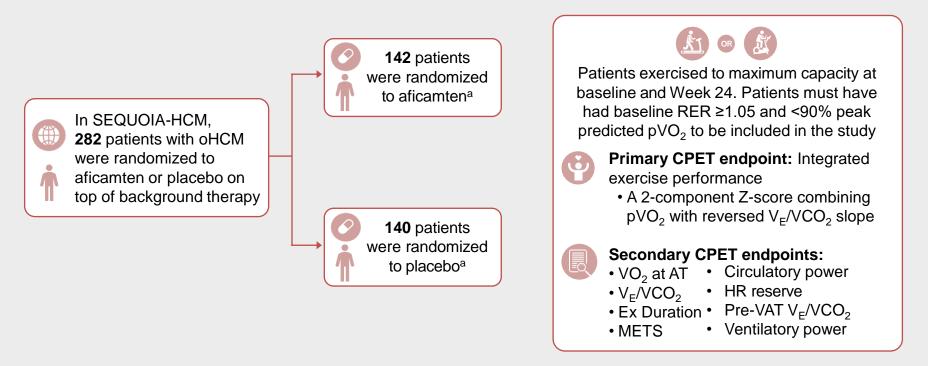
Background: Exercise Intolerance in Obstructive HCM



LVOT, left ventricular outflow tract; SAM, systolic anterior motion; VO₂, oxygen uptake. V_E/VCO₂ slope, slope of increase in minute ventilation (VE) relative to CO₂ production. Coats CJ, et al. *J Am Coll Cardiol HF* 2024;12:199-215.

Background: CPET in SEQUOIA-HCM

Cardiopulmonary exercise testing (CPET) enables objective assessment of all stages of exercise – Ventilatory efficiency (V_F/VCO₂ slope) and peak oxygen uptake (pVO₂) predict clinical outcomes in oHCM


In this prespecified analysis, we hypothesized that aficamten would improve a novel measure of integrated maximum and submaximum exercise performance, and that changes in pVO₂ would relate to clinically important endpoints

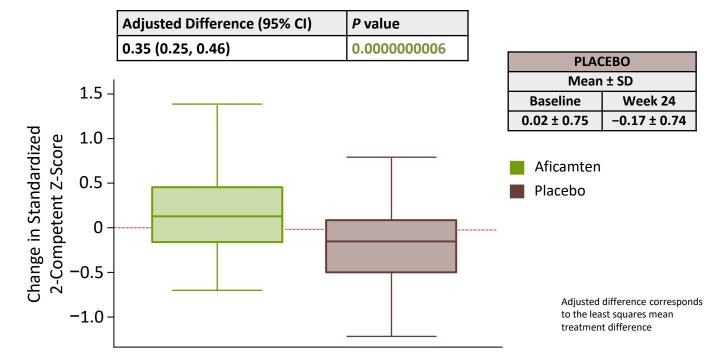
KCCQ, Kansas City Cardiomyopathy Questionnaire; NYHA, New York Heart Association; V_E, minute ventilation; VCO₂, carbon dioxide output. Lewis GD, et al., *Circ Heart Fail* 2022;15(5): p. e008970. *Coats C et al, Circulation HF 2015, N=198, HR for all-cause mortality after adjustment for age, sex, LA size and LVEF

Methodology and CPET Endpoints

^a9 aficamten- and 10 placebo-treated patients had invalid Week 24 CPET due to technical issues or deviation from CPET MOP, or because they discontinued from the study.

AT, anaerobic threshold; HR, heart rate; METS, metabolic equivalents; MOP, manual of operations; RER, respiratory exchange ratio; VAT, ventilatory anaerobic threshold.

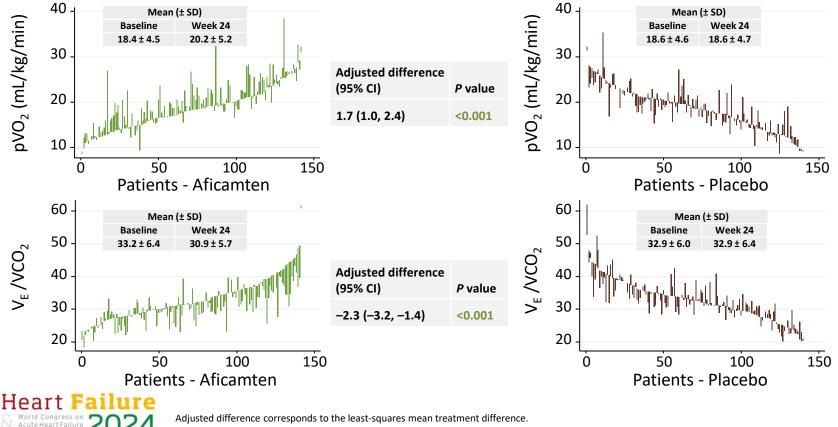
Coats CJ, et al. J Am Coll Cardiol HF 2024;12:199-215.

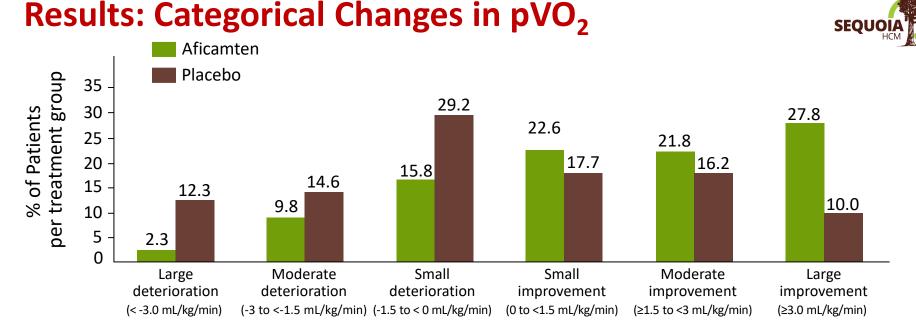

Heart Failu

Acute Heart Failure

Results: Baseline and Week 24 Values and Changes in Integrated Exercise Performance

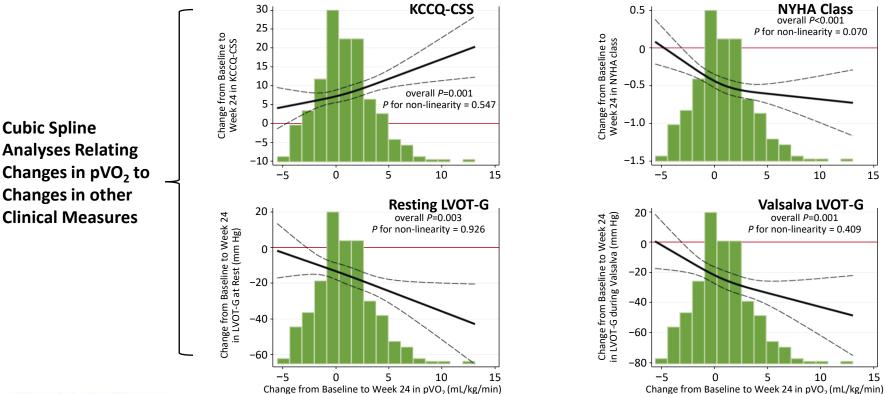
Integrated Exercise Performance (Z-score pVO₂ & V_E/VCO₂)




AFICAMTEN						
Mean ± SD						
Baseline	Week 24					
-0.01 ± 0.82	0.16 ± 0.76					

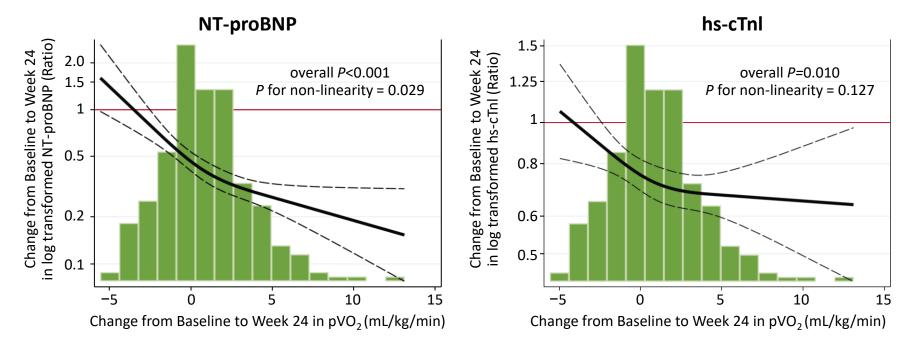
Integrated exercise performance was defined as the 2-component Z-score of pVO_2 and ventilatory efficiency (V_E/VCO_2 slope) and will be used in ACACIA-HCM (NCT06081894). The Z-score was derived by reversing the directionality of V_E/VCO_2 slope values such that increases in both Z-score components indicate benefit; equal weights were used for each component.

Results: Baseline and Week 24 Values and Changes in Integrated Exercise Performance Variable Components



Outcome	Odds ratio (95% CI)	NNT
Any improvement (small/moderate/large)	3.32 (1.99, 5.54)	3.5
Moderate/large improvement	2.78 (1.66, 4.66)	4.3
Large improvement	3.47 (1.76, 6.83)	5.6

Results: Relationships between Changes in pVO₂ and Changes in other Important Clinical Measures



Solid and dotted lines show the association with 95% CIs. Histograms show the distribution of change in pVO₂. Red lines indicate no change from baseline. KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score.

SEQUOIA

Results: Relationships between Changes in pVO₂ and Changes in Cardiac Biomarkers

In Multivariate Regression, change in logNT-proBNP explained the greatest variance in change in pVO₂

Solid and dotted lines show the association correlate with 95% CIs. Histograms show the distribution of change in pVO₂. hs-cTnI, high-sensitivity cardiac troponin I; NT-proBNP, N-terminal pro–B-type natriuretic peptide.

Results: CPET Parameters by Treatment Assignment

EQUOIA

	Aficamten (n=133)			Placebo (n=130)				
CPET variable	Baseline	Week 24	Absolute diff ± SD ^a	Baseline	Week 24	Absolute diff ± SD ^a	Adjusted diff (95% CI) ^b	P value
Integrated 2-component Z-score metric ^c	-0.01 ± 0.82	0.16 ± 0.76	0.17 ± 0.51	0.02 ± 0.75	-0.17 ± 0.74	-0.19 ± 0.45	0.35 (0.25, 0.46)	<0.001
MAXIMUM EXERCISE PARAMETERS								
pVO ₂ , mL/kg/min	18.4 ± 4.5	20.2 ± 5.2	1.8 ± 3.1	18.6 ± 4.6	18.6 ± 4.7	0.0 ± 2.7	1.7 (1.0, 2.4)	<0.001
Peak workload, watts	120 ± 40	134 ± 50	14 ± 27	126 ± 43	127 ± 44	1 ± 21	12 (6, 18)	<0.001
Peak METS, mL/kg/min	5.3 ± 1.3	5.8 ± 1.5	0.51 ± 0.89	5.3 ± 1.3	5.3 ± 1.3	0.00 ± 0.78	0.49 (0.29, 0.69)	<0.001
Peak circulatory power, mmHg·mL/min/kg	3013 ± 924	3550 ± 1140	537 ± 995	3160 ± 1136	3074 ± 1152	-86 ± 731	586 (379, 793)	<0.001
Exercise duration, min	11.2 ± 3.0	12.4 ± 3.9	1.2 ± 2.1	11.5 ± 3.0	11.7 ± 3.2	0.1 ± 1.5	1.0 (0.5, 1.4)	<0.001
HR reserve, beats/min	59 ± 18	66 ± 22	7 ± 15	57 ± 19	59 ± 20	1 ± 10	6 (3, 9)	<0.001
Peak RER	1.19 ± 0.10	1.20 ± 0.11	0.01 ± 0.10	1.18 ± 0.09	1.19 ± 0.10	0.01 ± 0.10	0.00 (-0.02, 0.02)	=0.84
SUBMAXIMUM EXERCISE PARAMETERS								
Ventil efficiency pre-VAT, V _E /VCO ₂ slope	29.2 ± 5.4	27.4 ± 4.4	−1.9 ± 4.7	29.1 ± 4.7	28.8 ± 5.6	-0.3 ± 4.2	-1.5 (-2.5, -0.6)	=0.002
All of exercise, V _E /VCO ₂ slope	33.2 ± 6.4	30.9 ± 5.7	-2.2 ± 4.0	32.9 ± 6.0	32.9 ± 6.4	0.1 ± 3.7	-2.3 (-3.2, -1.4)	<0.001
Ventil power, mmHg	5.1 ± 1.5	5.9 ± 1.6	0.8 ± 1.3	5.2 ± 1.6	5.1 ± 1.5	-0.1 ± 1.0	0.9 (0.6, 1.1)	<0.001
VO_2 at anaerobic threshold, mL/min	898 ± 266	958 ± 276	60 ± 107	931 ± 261	927 ± 257	-3 ± 108	59 (33, 85)	<0.001
VO ₂ /work slope, mL/min/watt	8.3 ± 2.5	8.6 ± 2.5	0.3 ± 1.8	8.2 ± 2.3	8.2 ± 2.4	0.1 ± 1.7	0.2 (-0.2, 0.6)	=0.22

Heart Failure World Congress on Acute Heart Failure 2024 Data are shown as mean ± SD unless otherwise specified. Green indicates significant *P* value. Adjusted diff, least-squares mean treatment difference. ^a The absolute difference corresponds to the change from baseline to week 24. ^b The adjusted difference corresponds to the LSM treatment difference. ^c Integrated exercise performance was defined as the 2-component Z-score of pVO₂ and ventilatory efficiency (V_E/VCO₂ slope). The Z-score was derived by reversing the directionality of V_E/VCO₂ slope values such that increases in both Z-score components indicate benefit; equal weights were used for each component. Diff, difference; LSM, least square mean; Ventil, ventilatory.

Conclusions

- Our comprehensive prespecified analysis of CPET metrics in SEQUOIA-HCM demonstrates significant improvement in:
 - A novel integrated exercise performance metric combining maximal and submaximal exercise parameters (pVO₂ and V_E/VCO₂)
 - Multiple other measures of exercise performance
- Enhanced exercise responses correlated with significant improvements in cardiac structure and function extending beyond reduction in LVOT-Gradient
- These findings offer valuable mechanistic and clinical insights into the beneficial therapeutic effects of aficamten in patients with oHCM

Acknowledgments

The SEQUOIA-HCM trial is funded by Cytokinetics, Incorporated.

We thank the following individuals for their contributions to this clinical trial:

- Participants and their families
- Investigators and study site staff
- Data Monitoring Committee members
- Steering Committee members: Gregory D. Lewis, Theodore Abraham, Michael Arad, Nuno Cardim, Lubna Choudhury, Caroline J. Coats, Milind Desai, Hans-Dirk Düngen, Pablo Garcia-Pavia, Albert A. Hagège, Carolyn Y. Ho, James L. Januzzi, Christopher Kramer, Raymond Kwong, Matthew M.Y. Lee, Chang-Sheng Ma, Martin S. Maron, Ahmad Masri, Michelle Michels, Iacopo Olivotto, Artur Oreziak, Anjali T. Owens, Sara Saberi, Scott D. Solomon, John A. Spertus, Jacob Tfelt-Hansen, Marion van Sinttruije, Josef Veselka, and Hugh C. Watkins
- Editorial support for the preparation of this presentation was provided by Elyse Smith, PhD, and Susan Tan, PhD, on behalf of Engage Scientific Solutions, Inc., and was funded by Cytokinetics, Incorporated.

