Dosing and Safety Profile of Aficamten in Symptomatic Obstructive Hypertrophic Cardiomyopathy

Results from SEQUOIA-HCM

Caroline J. Coats, MD, PhD, on behalf of the SEQUOIA-HCM Investigators

May 13, 2024

Disclosure

• Here are my disclosures

Background

- Aficamten is an investigational, novel, cardiac myosin inhibitor with unique physiochemical properties targeting the hypercontractility seen in patients with obstructive hypertrophic cardiomyopathy (oHCM)
- Exposure to cardiac myosin inhibitors have the potential for excessive reduction in contractile function and symptomatic heart failure (HF)^{1,2}
- Aficamten was engineered with the goal of achieving specific pharmacologic properties that allow for flexible dosing and increased safety³

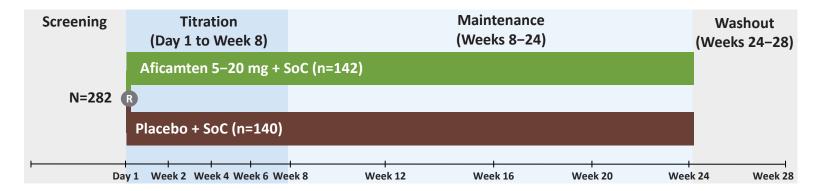
Rapid onset

Rapid reversibility

Speed to optimal dose

Predictable dose response

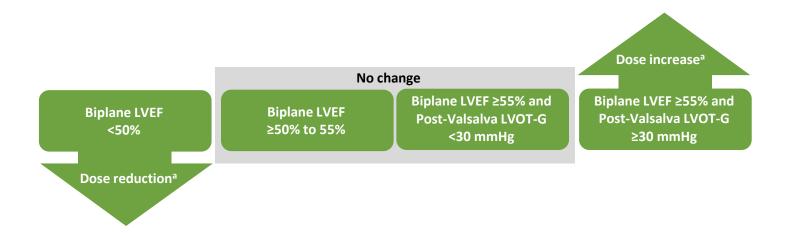
No teratogenicity No clinically meaningful P450 liabilities



^{2.} Heitner SB, et al. Ann Intern Med 2019;170(11):741-748.

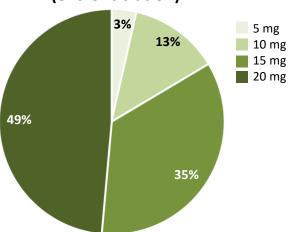
Study Design

- Assessments were performed at screening and at each visit, and patients had 3 opportunities (Weeks 2, 4, and 6) for dose escalation
- SEQUOIA-HCM met its primary endpoint: improved peak oxygen uptake (pVO₂) at Week 24, measured by cardiopulmonary exercise testing


- This prespecified analysis by treatment phase (Titration, Maintenance, Washout):
 - Evaluated the safety of site-based echocardiographically-guided dose titration AND
 - Characterized the dose-concentration relationship and stability of plasma drug concentration during the maintenance phase

Dose Titration Scheme and Safety Outcomes

Site-based echocardiographically-guided dose titration algorithm

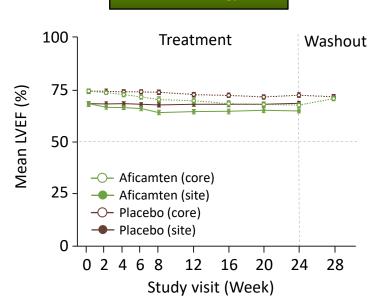

Individualised doses → Valsalva LVOT-G <30 mmHg and LVEF ≥50%

Baseline Characteristics by Aficamten Dose at Week 8 (end of titration)

Aficamten dose at Week 8 (end of titration)

 There were no differences in age, sex, ethnicity, body mass index, or comorbidities (diabetes, hypertension or AF) between dose groups

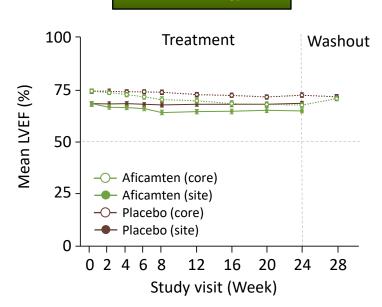
Mean ± SD, n (%), or median (IQR)	Placebo n=140	5 mg n=5	10 mg n=18	15 mg n=49	20 mg n=68	
% per treatment group	100%	3.5%	12.7%	34.5%	47.9%	
Background HCM therapy						
Beta-blocker	87 (62.1)	5 (100.0)	10 (55.6)	31 (63.3)	40 (58.8)	
Calcium channel blocker	36 (25.7)	1 (20.0)	3 (16.7)	17 (34.7)	24 (35.3)	
Disopyramide	20 (14.3)	1 (20.0)	5 (27.8)	3 (6.1)	7 (10.3)	
Baseline study assessments						
KCCQ-CSS	74 ± 18	68 ± 26	75 ± 19	77 ± 20	75 ± 17	
NYHA class II	106 (75.7)	3 (60.0)	16 (88.9)	33 (67.3)	54 (79.4)	
NT-proBNP, pg/mL	692 (335, 1795)	1133 (992, 1475)	338 (283, 674)	871 (428, 1505)	962 (511, 2085)	
hs-cTnI, ng/L	12 (8, 25)	12 (6, 234)	10 (5, 17)	13 (7, 24)	16 (8, 38)	
pVO ₂ , mL/kg/min	18.6 ± 4.5	18.7 ± 2.9	18.6 ± 3.9	18.2 ± 4.1	18.3 ± 4.9	
Echocardiographic parameters (core laboratory)						
LVEF at baseline, %	75 ± 6	71 ± 12	76 ± 5	75 ± 5	75 ± 5	
Peak LVOT-G at rest	55 ± 32	29 ± 13	45 ± 21	56 ± 24	58 ± 30	
Peak LVOT-G post-Valsalva	83 ± 33	51 ± 24	71 ± 29	84 ± 26	88 ± 35	
Left ventricular MWT, cm	2.10 ± 0.30	2.42 ± 0.74	1.94 ± 0.22	2.04 ± 0.26	2.11 ± 0.28	



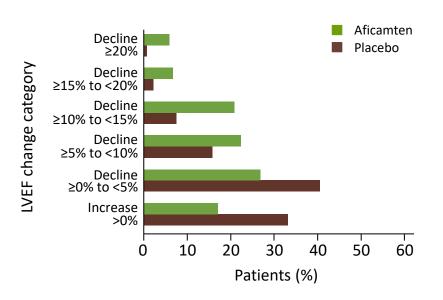
LVEF over the Study Period

Mean change in core laboratory LVEF over 24 weeks

Placebo corrected ΔLVEF = -4.8%



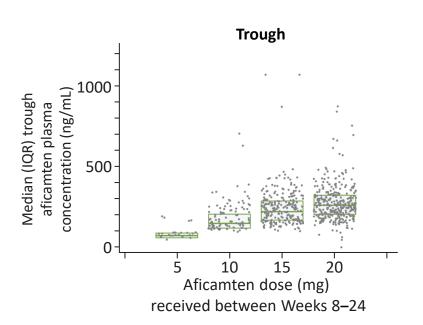
LVEF over the Study Period

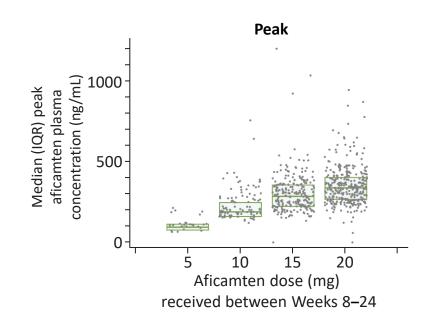


Mean change in core laboratory LVEF over 24 weeks

Placebo corrected ΔLVEF = -4.8%

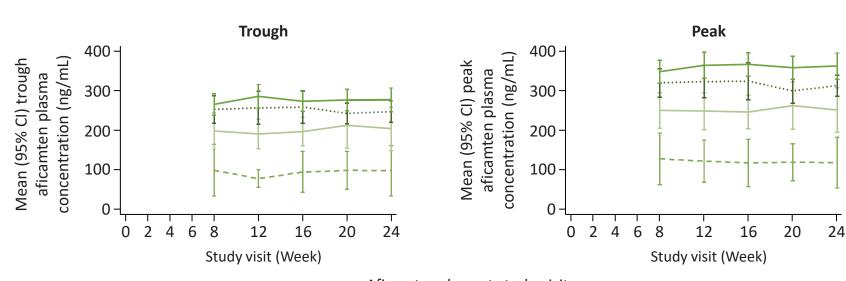
Distribution of categorical changes in core laboratory LVEF from baseline to Week 24

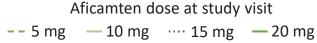




Plasma Drug Concentration: Maintenance Phase

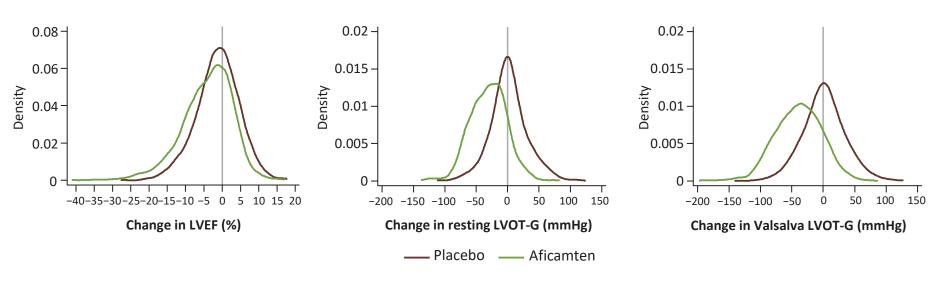
Trough and peak plasma drug concentrations for all available individual concentration measurements between Weeks 8–24 independent of study week





Plasma Drug Concentration: Maintenance Phase (continued)

Trough and peak plasma drug concentration by dose and study visit between Weeks 8-24



Distribution of Changes in Echocardiographic Parameters from Baseline at Each Study Visit

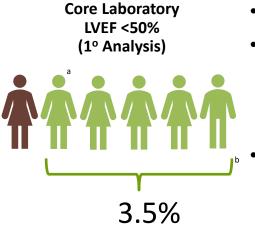
Small shifts from baseline in LVEF were associated with large reductions in LVOT-G

Gray vertical line denotes no change in echocardiographic parameter from baseline.

LVEF <50% (Site Read) Requiring Dose Adjustment

Site Interpreted LVEF <50%

• No treatment interruptions occurred


- Aficamten
- Placebo

^a COVID-19 infection preceded LVEF <50% based on both core and site laboratory assessments.

Incidence of LVEF <50% (Core Laboratory)

- No treatment interruptions occurred
- No heart failure was experienced by any aficamten-treated patient with LVEF < 50% by either core laboratory or site interpreted
- <u>All</u> aficamten-treated patients with LVEF
 <50% were reversible

Aficamten

Placebo

^a COVID-19 infection preceded LVEF <50% based on both core and site laboratory assessments.

^b Did not undergo dose adjustment

Safety Outcomes

AEs with ≥5% incidence

There were no serious adverse cardiovascular events associated with aficamten treatment in SEQUOIA-HCM

Event, n (%)	Placebo (n=140)	Aficamten (n=142)	
Overall AEs	99 (70.7)	105 (73.9)	
Headache	10 (7.1)	11 (7.7)	
Hypertension	3 (2.1)	11 (7.7)	
Palpitations	4 (2.9)	10 (7.0)	
Upper respiratory infection	12 (8.6)	9 (6.3)	
COVID-19	9 (6.4)	8 (5.6)	
Dyspnea	8 (5.7)	8 (5.6)	
SAEs	13 (9.3)	8 (5.6)	
Cardiac AEs	21 (15.0)	24 (16.9)	
Discontinuations	4 (2.9)	5 (3.5)	
New-onset AF	1 (0.7)	1 (0.7)	
Appropriate ICD shock	1 (0.7)	0	
LVEF <50% by core laboratory ^a	1 (0.7)	5 (3.5)	
Dose reduction based on site-read LVEF <50%	1 (0.7)	7 (4.9)	

^a 1 placebo- and 1 aficamten-treated patient overlap with dose reduction based on site-read LVEF <50%.

Conclusions

- Aficamten appeared safe and effective in the treatment of patients with oHCM in SEQUOIA-HCM using locally interpreted echocardiographic dose titration and monitoring
- There was a very low frequency of LVEF <50%, all asymptomatic
- There were no treatment interruptions for reduced LVEF
- The AE profile of aficamten was similar to that of placebo, with hypertension and palpitations occurring somewhat more frequently in the aficamten group

Acknowledgments

The SEQUOIA-HCM trial is funded by Cytokinetics, Incorporated.

We thank the following individuals for their contributions to this clinical trial:

- Participants and their families
- Investigators and study site staff
- Data Monitoring Committee members
- Steering Committee members: Caroline J. Coats, Theodore P. Abraham, Michael Arad, Nuno Cardim, Lubna Choudhury, Milind Desai, Hans-Dirk Düngen, Pablo Garcia-Pavia, Albert A. Hagège, Carolyn Y. Ho, James L. Januzzi, Christopher Kramer, Raymond Kwong, Matthew M.Y. Lee, Gregory D. Lewis, Chang-Sheng Ma, Martin S. Maron, Ahmad Masri, Michelle Michels, Iacopo Olivotto, Artur Oreziak, Anjali T. Owens, Sara Saberi, Scott D. Solomon, John A. Spertus, Marion van Sinttruije, Jacob Tfelt-Hansen, Josef Veselka, and Hugh C. Watkins
- Editorial support for the preparation of this presentation was provided by Elyse Smith, PhD, on behalf of Engage Scientific Solutions, Inc., and was funded by Cytokinetics, Incorporated.

