Clinical Application of Biomarkers in Obstructive HCM: Insights from SEQUOIA-HCM

Caroline J. Coats¹, Ahmad Masri, Roberto Barriales-Villa, Theodore P. Abraham, Brian Claggett, Albert Hagege, Carolyn Y. Ho, Matthew M. Y. Lee, Martin S. Maron, Anjali T. Owens, Jacob Tfelt-Hansen, Hugh C. Watkins, Daniel L. Jacoby, Amy Wohltman, James L. Januzzi, on behalf of the SEQUOIA-HCM Investigators

¹School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK

European Society of Cardiology Congress, 2024; London, UK; September 1, 2024

- Aficamten is an investigational, novel, cardiac myosin inhibitor targeting the **hypercontractility** seen in patients with obstructive hypertrophic cardiomyopathy (oHCM).
- Aficamten was engineered with the goal of achieving specific pharmacologic properties that allow for flexible dosing and optimal safety.
 - A half-life of \sim 3.4 days \rightarrow steady state by 2 weeks, rapid dose titration, and reversibility.
 - A predictable and shallow dose-response relationship.
 - Low liability for drug-drug interactions due to metabolism via multiple cytochrome P450 enzymes.

ESC Congress 2024

Background: Biomarkers in Hypertrophic Cardiomyopathy

- Multiple studies have shown circulating cardiac biomarkers are associated with key pathophysiologic processes in HCM.
- Troponins and natriuretic peptides correlate with adverse prognosis and heart failure symptoms in HCM.

 It is unknown if biomarker testing provides insights into treatment for oHCM.

SEOUC

LA, left atrium; LGE, late gadolinium enhancement; LV, left ventricle; LVOT, left ventricular outflow tract; HCM, hypertrophic cardiomyopathy; NT-proBNP, N-terminal pro-B type natriuretic peptide.

Figure © Matthia EL, et al. *J Am Heart Assoc* 2022;11(23):e027618. Published on behalf of the AHA, Inc., by Wiley. Licensed CC BY-NC-ND 4.0

ESC Congress 2024 London & Online

- Aficamten dose was adjusted to achieve Valsalva LVOT-G <30 mmHg while maintaining LVEF ≥50%.
- Clinical assessments, including cardiac biomarkers, were measured at baseline, each dose titration (Weeks 2, 4, and 6), every 4 weeks during treatment, and after 4 weeks drug washout.
- SEQUOIA-HCM met its primary endpoint: improved pVO₂ at Week 24, measured by cardiopulmonary exercise testing.

Black arrows indicate timing of clinical and biomarker assessments.

LVEF, left ventricular ejection fraction; LVOT-G, LVOT gradient; pVO₂, peak oxygen uptake; R, randomized (1:1) in a blinded

manner; SoC, standard of care.
Maron MS, et al. N Engl J Med 2024;390(20):1849-61.

ESC Congress 2024

London & Online

Methods: SEQUOIA-HCM Study Design and Objectives

- This pre-specified secondary analysis of SEQUOIA-HCM describes the impact of aficamten on cardiac biomarkers.
- Our specific objectives were to:
 - 1. Describe associations between baseline NT-proBNP and hs-cTnI concentrations and patient characteristics.
 - 2. Assess the relationship between changes in cardiac biomarkers and efficacy endpoints during aficamten treatment and after drug washout.
 - 3. Test the hypothesis that the 2 week change in cardiac biomarkers is associated with response to treatment.

Results: Baseline Characteristics

	Overall
	n=282
Age, y	59.1 ± 12.9
Female sex	115 (40.8)
BMI, kg/m ²	28.1 ± 3.7
Race, White	223 (79.1)
Biomarker concentrations, median [IQR]	
NT-proBNP, ng/L	788 [346, 1699]
hs-cTnl, ng/L	12 [8, 27]
Background HCM therapy	
Beta-blockers	173 (61.3)
Calcium-channel blockers	81 (28.7)
Disopyramide	36 (12.8)
ICD	39 (13.8)
Background health status	
pVO ₂ , mL/kg/min	18.5 ± 4.5
KCCQ-CSS	74.7 ± 18.0
NYHA FC II	214 (75.9)
Echocardiogram	
Resting LVOT-G, mmHg	55.1 ± 29.6
Valsalva LVOT-G, mmHg	83.1 ± 32.3
LVEF, %	74.8 ± 5.9
Maximal LV wall thickness, cm	2.09 ± 0.30

ESC Congress 2024

Data shown as mean ± SD or n (%) unless otherwise specified.

London & Online

6

BMI, body mass index; ICD, implantable cardioverter defibrillator; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score; NYHA FC, New York Heart Association functional class.

Results: Baseline Characteristics

	Overall	NT-pr	-proBNP		
	n=282	Below Median, n=139	Above Median, n=138		
Age, y	59.1 ± 12.9	57.6 ± 12.0	60.4 ± 13.8		
Female sex	115 (40.8)	40 (28.8)	72 (52.2)		
BMI, kg/m ²	28.1 ± 3.7	29.0 ± 3.3	27.1 ± 3.9		
Race, White	223 (79.1)	109 (78.4)	109 (79.0)		
Biomarker concentrations, median [IQR]					
NT-proBNP, ng/L	788 [346, 1699]	346 [219, 521]	1714 [1087, 2709]		
hs-cTnl, ng/L	12 [8, 27]	10 [6,19]	16 [10, 38]		
Background HCM therapy					
Beta-blockers	173 (61.3)	75 (54.0)	95 (68.8)		
Calcium-channel blockers	81 (28.7)	43 (30.9)	37 (26.8)		
Disopyramide	36 (12.8)	13 (9.4)	23 (16.7)		
ICD	39 (13.8)	16 (11.5)	22 (15.9)		
Background health status					
pVO ₂ , mL/kg/min	18.5 ± 4.5	19.5 ± 4.4	17.5 ± 4.4		
KCCQ-CSS	74.7 ± 18.0	75 ± 17	75 ± 20		
NYHA FC II	214 (75.9)	107 (77.0)	102 (73.9)		
Echocardiogram					
Resting LVOT-G, mmHg	55.1 ± 29.6	46 ± 26	64 ± 30		
Valsalva LVOT-G, mmHg	83.1 ± 32.3	76 ± 31	90 ± 32		
LVEF, %	74.8 ± 5.9	75 ± 6	74 ± 6		
Maximal LV wall thickness, cm	2.09 ± 0.30	2.04 ± 0.27	2.14 ± 0.33		

ESC Congress 2024 • London & Online

■ Data shown as mean ± SD or n (%) unless otherwise specified.

BMI, body mass index; ICD, implantable cardioverter defibrillator; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score; NYHA FC, New York Heart Association functional class.

SEQUOIA

Results: Baseline Characteristics

	Overall	NT-pr	oBNP	hs-cTnl		
	n=282	Below Median, n=139	Above Median, n=138	Below Median, n=136	Above Median, n=134	
Age, y	59.1 ± 12.9	57.6 ± 12.0	60.4 ± 13.8	60.3 ± 12.2	57.6 ± 13.5	
Female sex	115 (40.8)	40 (28.8)	72 (52.2)	68 (50.0)	40 (29.9)	
BMI, kg/m ²	28.1 ± 3.7	29.0 ± 3.3	27.1 ± 3.9	28.5 ± 3.8	27.6 ± 3.6	
Race, White	223 (79.1)	109 (78.4)	109 (79.0)	115 (84.6)	98 (73.1)	
Biomarker concentrations, median [IQR]						
NT-proBNP, ng/L	788 [346, 1699]	346 [219, 521]	1714 [1087, 2709]	511 [279, 1112]	1064 [542, 2359]	
hs-cTnl, ng/L	12 [8, 27]	10 [6,19]	16 [10, 38]	8 [5, 10]	28 [17, 68]	
Background HCM therapy						
Beta-blockers	173 (61.3)	75 (54.0)	95 (68.8)	90 (66.2)	74 (55.2)	
Calcium-channel blockers	81 (28.7)	43 (30.9)	37 (26.8)	33 (24.3)	46 (34.3)	
Disopyramide	36 (12.8)	13 (9.4)	23 (16.7)	21 (15.4)	13 (9.7)	
ICD	39 (13.8)	16 (11.5)	22 (15.9)	16 (11.8)	22 (16.4)	
Background health status						
pVO ₂ , mL/kg/min	18.5 ± 4.5	19.5 ± 4.4	17.5 ± 4.4	18.0 ± 4.3	19.0 ± 4.6	
KCCQ-CSS	74.7 ± 18.0	75 ± 17	75 ± 20	72 ± 18	77 ± 18	
NYHA FC II	214 (75.9)	107 (77.0)	102 (73.9)	98 (72.1)	105 (78.4)	
Echocardiogram						
Resting LVOT-G, mmHg	55.1 ± 29.6	46 ± 26	64 ± 30	54 ± 30	56 ± 30	
Valsalva LVOT-G, mmHg	83.1 ± 32.3	76 ± 31	90 ± 32	82 ± 33	85 ± 32	
LVEF, %	74.8 ± 5.9	75 ± 6	74 ± 6	75 ± 5	74 ± 6	
Maximal LV wall thickness, cm	2.09 ± 0.30	2.04 ± 0.27	2.14 ± 0.33	1.99 ± 0.24	2.18 ± 0.33	

ESC Congress 2024 • London & Online

 \bigcirc Data shown as mean \pm SD or n (%) unless otherwise specified.

BMI, body mass index; ICD, implantable cardioverter defibrillator; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score; NYHA FC, New York Heart Association functional class.

Results: Clinical Variables That Predict Baseline NT-proBNP Concentration

SEQUOIA

Predictors of baseline NT-proBNP, n=266	Association (95% CI)	Z	P value
hs-cTnI (per log)	+35% (+23%, +47%)	6.7	<0.001
LAVi (per SD)	+30% (+17%, +45%)	4.9	<0.001
E/e´ septal (per SD)	+31% (+17%, +47%)	4.6	<0.001
Resting LVOT-G (per SD)	+23% (+10%, +37%)	3.7	<0.001
BMI (per 5 kg/m ²)	-24% (-34%, -13%)	3.9	<0.001
Female sex	+48% (+18%, +86%)	3.4	0.001

ESC Congress 2024 London & Online

E/e⁻, the ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity; LAVi, left atrial volume index.

Results: Clinical Variables that Predict Baseline hs-cTnl Concentration

Predictors of baseline hs-cTnl, n=266	Association (95% CI)	Z	P value
NT-proBNP (per log)	+41% (+25%, +59%)	5.6	<0.001
Female sex	-48% (-61%, -32%)	4.7	<0.001
Maximal LV wall thickness (per SD)	+33% (+17%, +52%)	4.3	<0.001

10

Results: Effect of Aficamten on Biomarkers in SEQUOIA-HCM

SEQUO

Results: Effect of Aficamten on Biomarkers in SEQUOIA-HCM

SEQUO

Results: Improvement in Exercise Capacity Is Consistent Irrespective of Baseline Baseline Biomarkers

	Placebo	Aficamten	1			Least s pV	equares mean differer O_2 (95% CI) mL/kg/mi	ice in n
NT-proBNP								
≤ 788 ng/L	66	72			•	—	1.7 (0.6, 2.8)	
> 788 ng/L	72	66			-	-	1.9 (1.0, 2.7)	
hs-cTnl			1					
≤12.1 ng/L	63	70		_			2.2 (1.2, 3.2)	
> 12.1 ng/L	76	61	-				1.3 (0.3, 2.3)	
			0	1	2	3	4	

pVO₂ change from baseline to 24 weeks

Aficamten improved pVO₂ irrespective of baseline biomarkers

- LVEF <50% was an event of special interest in SEQUOIA-HCM.
- No aficamten-treated patient with LVEF <50% experienced heart failure.
- Only 1 patient with LVEF <50% had an increase in NT-proBNP (also had COVID-19).
 - NT-proBNP 43 ng/L (baseline) \rightarrow 154 ng/L

14

ESC Congress 2024

London & Online

Results: Relationship Between Changes in hs-cTnl Concentration and Other Clinical Measures (Ratio of Week 24 to Baseline)

15

no change from baseline.

SEQUOIA

Results: Relationship Between Changes in NT-proBNP Concentration and Other Clinical Measures (Ratio of Week 24 to Baseline)

Results: An Inverse Linear Association Between Relative Change in NT-proBNP and Change in pVO₂

Change in NT-proBNP by 24 weeks was an accurate surrogate for change in pVO₂

17

SEQUO

Results: An Inverse Linear Association Between Relative Change in NT-proBNP and Change in LVOT-G

SEQUOI/

The NT-proBNP decrease may not be directly caused by lower LVOT-G

ESC Congress 2024 London & Online

Results: Week 2 Change in NT-proBNP Was Associated With Week 24 Change in Clinical Outcomes

Conclusions

- In SEQUOIA-HCM, concentrations of NT-proBNP and hs-cTnI were associated with relevant clinical and echocardiographic measurements at baseline.
- After 24 weeks of treatment, aficamten resulted in an 80% reduction in NT-proBNP and 43% reduction in hs-cTnI with concentrations returning to baseline after washout.
- Reductions in NT-proBNP and hs-cTnI with aficamten treatment were strongly associated with lowering of LVOT-G, improvement in health status and increased pVO₂.
- The change in NT-proBNP concentration by Week 2 was associated with 24-week change in key clinical outcomes.

Clinicians may consider the use of NT-proBNP to monitor functional and qualitative response to aficamten

Acknowledgments

The SEQUOIA-HCM trial is funded by Cytokinetics, Incorporated.

We thank the following individuals for their contributions to this clinical trial:

- Participants and their families
- Investigators and study site staff
- Data Monitoring Committee members
- Steering Committee members: Gregory D. Lewis, Theodore P. Abraham, Michael Arad, Nuno Cardim, Lubna Choudhury, Caroline J. Coats, Milind Desai, Hans-Dirk Düngen, Pablo Garcia-Pavia, Albert A. Hagège, Carolyn Y. Ho, James L. Januzzi, Christopher Kramer, Raymond Kwong, Matthew M.Y. Lee, Chang-Sheng Ma, Martin S. Maron, Ahmad Masri, Michelle Michels, Iacopo Olivotto, Artur Oreziak, Anjali T. Owens, Sara Saberi, Scott D. Solomon, John A. Spertus, Jacob Tfelt-Hansen, Marion van Sinttruije, Josef Veselka, and Hugh C. Watkins

Editorial support for the preparation of this presentation was provided by Elyse Smith, PhD, on behalf of Engage Scientific Solutions, and was funded by Cytokinetics, Incorporated.

Simultaneous Publication in EHJ

1 Cardiac biomarkers and effects of aficamten in obstructive hypertrophic cardiomyopathy:

- 2 the SEQUOIA-HCM trial
- з
- Caroline J. Coats¹, Ahmad Masn², Roberto Barriales-Villa³, Theodore P. Abraham⁴, D. Marshall
- 5 Brinkley⁵, Brian L. Claggett⁶, Albert Hagege⁷, Sheila M. Hegde⁶, Carolyn Y. Ho⁸, Ian J. Kulac⁶
- 6 Matthew M. Y. Lee¹, Martin S. Maron⁹, Iacopo Olivotto¹⁰, Anjali T. Owens¹¹, Scott D.
- 7 Solomon⁶, Jacob Tfelt-Hansen¹², Hugh C. Watkins¹³, Daniel L. Jacoby¹⁴, Stephen B. Heitner¹⁴,
- 8 Stuart Kupfer¹⁴, Fady I. Malik¹⁴, Lisa Meng¹⁴, Amy Wohltman¹⁴, and James L. Januzzi^{15,16}; on
- 9 behalf of the SEQUOIA-HCM Investigators
- 10
- 11 ¹School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK; ²Oregon
- 12 Health & Science University, Portland, OR, USA, ³Complexo Hospitalario Universitario A
- 13 Coruña, INIBIC, CIBERCV-ISCIII, A Coruña, Spain; ⁴University of California San Francisco,
- 14 San Francisco, CA, USA; ⁵Vanderbilt Heart & Vascular Institute, Nashville, TN, USA;
- 15 ⁶Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston,
- 16 MA, USA; ⁷Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou,
- 17 Département de Cardiologie, Paris, France; ⁸Department of Medicine, Brigham and Women's
- 18 Hospital, Harvard Medical School, Boston, MA, USA; ⁹Lahey Hospital and Medical Center,
- 19 Budington, MA, USA; ¹⁰Meyer Children's Hospital, Istituto di Ricovero e Cura a Carattere
- 20 Scientifico, Florence, Italy; ¹¹University of Pennsylvania Perelman School of Medicine,
- 21 Philadelphia, PA, USA; ¹²Section of Forensic Genetics, Department of Forensic Medicine,
- 22 Faculty of Health and Medical Sciences, University of Copenhagen, and Department of
- 23 Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; ¹³Radcliffe

☺ The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original lwork is property cited.

ESC Congress 2024

22

European Heart Journal

https://academic.oup.com/eurheartj/articlelookup/doi/10.1093/eurheartj/ehae590