Evaluation of Cytochrome P450 2C9, 2C19, and 2D6 Inhibition on the Pharmacokinetics of Aficamten in Healthy Participants

Neha Maharao¹, PhD; Justin D. Lutz¹, PharmD, PhD; Tyrell Simkins², DO, PhD; Yun Shaw³, BS; Jianlin Li⁴, PhD; Priyanka Solanki⁵, RPh, MS; Adrienne Griffith¹, BA; Stephen B. Heitner², MD, FACC, FASE; Stuart Kupfer², MD; and Polina German¹, PharmD ¹Department of Clinical Pharmacology, ²Department of Clinical Research, ³Department of Drug Safety and Pharmacovigilance, Cytokinetics Incorporated, South San Francisco, CA, USA

PK sampling o

AFI and its

AFI=aficamten; Approx.=Approximate; FLZ=Fluconazole; FLX=Fluoxetine; PRX=Paroxetine; QD=once a da

metabolites

Fluoxetine and aficamten were administered 30 min and 1.5 h post standardized breakfast, respectively. On Day 28, aficamten was dosed 1 hour after fluoxetine dosing

Presented at the American College of Cardiology (ACC) Annual Scientific Meeting | Chicago, IL, USA | March 29–31, 2025.

Safety and tolerability were monitored

throughout the study

Demographics

 17 subjects were enrolled in each cohort - All 17 subjects in Cohort 2, and 16 subjects in cohorts 1 and 3 completed the study

Table 1: Summary of baseline demographics

Demographics	Cohort 1 (N=17)	Cohort 2 (N=17)	
Sex (male/female), n/n	14/3	14/3	
Age, mean (SD), years	32.4 (6.22)	35.9 (7.83)	
BMI, mean (SD), kg/m²	25.1 (3.22)	24.7 (2.75)	
Race, n (%)			
Asian	0 (0)	2 (11.8)	
Black or African American	5 (29.4)	4 (23.5)	
Black or African American, American Indian or Alaska Native	1 (5.9)	0 (0)	
White	9 (52.9)	11 (64.7)	
White, Black or African American	2 (11.8)	0 (0)	
Ethnicity, n (%)	Ethnicity, n (%)		
Hispanic or Latino	5 (29.4)	2 (11.8)	

BMI, body mass index.; SD, Standard Deviation participant each in Cohorts 1 and 3 terminated early from the study due to personal reason

Safety

- There were no deaths, serious adverse events, or discontinuations due to adverse events (AEs) across the 3 cohorts
- No safety concerns were identified from the evaluation of clinical laboratory reports, vital signs, electrocardiograms, or physical examinations in any cohort
- All treatment-emergent AEs reported for cohort 1 (n=6), cohort 2 (n=10) and cohort 3 (n=11) were of mild severity and considered unrelated to aficamten, except 1 event (fatigue) related to aficamten in cohort 3
- All AEs across the 3 cohorts were resolved by the end of the study

CONCLUSIONS

- encountered drug interactions.
- carbamazepine, phenytoin).

PK sampling

of AFI and its

metabolites

Aficamten is metabolized via multiple CYP enzymes (CYP2C9 [fm=50%], CYP3A [fm=26%; historical data], CYP2D6 [fm=21%], and CYP2C19 [fm=3%]) rendering it susceptible to only a limited number of uncommonly

Only weak DDIs (1.5- to < 2-fold) are likely from strong inhibition of any one pathway and only moderate (2- to < 5-fold) impact on aficamten exposure is expected with strong multi-pathway inhibitors (e.g. high-dose fluconazole, voriconazole and fluvoxamine) or inducers (e.g. rifampin,

References: 2. Malik, F. et al. JACC Basic Transl Sci. 2022;7:763–75. no contribution was made to content. shareholders of Cytokinetics, Incorporated.

P. cytochrome P450; fm. fraction metabolized

CYP enzyme

CYP2C9

CYP3A

CYP2D6

CYP2C19

Pharmacokinetics

Table 2: Statistical PK comparisons for aficamten administered alone and with fluconazole

K parameter ^a (N=16 ^b)	Reference	Test	Test vs Reference
	10 mg AFI	10 mg AFI + 400 mg FLZ QD	GLSM Ratio (%) (90% Cl)
JC _{0-t} (ng·h/mL)	2440 (15.6)	4980 (14.3)	204 (193, 217)
JC _{0-inf} (ng·h/mL)	2860 (19.0)	10,900 (22.1)	378 (347, 411)
C _{max} (ng/mL)	64.4 (30.0)	66.4 (44.4)	98.9 (86.6, 113)
t _{max} (h)	1.53 (1.01, 2.00)	1.50 (0.99, 3.01)	_
t _{1/2} (h)	76.7 (65.8, 90.4)	226 (210, 273)	<0.0001°
MR AUC _{0-inf}	0.71 (40.6)	0.17 (33.6)	24.4 (21.4, 27.8)
MR AUC _{0-inf}	1.31 (30.8)	0.40 (25.0)	30.6 (27.8, 33.7)

• Concomitant administration of aficamten with fluconazole (strong CYP2C19 inhibitor and moderate CYP3A and CYP2C9 inhibitor) increased the AUC_{0-inf} of aficamten by 278% with no change in C_{max}

Table 3: Statistical PK comparisons for aficamten administered alone and with paroxetine

K parameter ^a (N=17)	Reference	Test	Test vs Reference ^b
	10 mg AFI	10 mg AFI + 40 mg PRX QD	GLSM Ratio (%) (90% Cl)
JC _{0-t} (ng·h/mL)	2560 (21.0)	3090 (18.6)	121 (115, 127)
JC _{0-inf} (ng·h/mL)	3100 (26.0)	3910 (24.9)	127 (119, 135)
C _{max} (ng/mL)	65.3 (47.3)	79.5 (58.9)	120 (103, 141)
t _{max} (h)	1.55 (1.00, 1.98)	1.00 (0.75, 2.02)	_
t _{1/2} (h)	86.1 (66.9, 94.8)	86.4 (81.5, 113)	0.0001°
MR AUC 0-inf	0.85 (38.4)	0.70 (30.1)	85.0 (80.5, 89.8)
MR AUC 0-inf	1.52 (44.1)	1.05 (22.4)	71.4 (66.0, 77.2)

on: CV. coefficient of variation: GLSM. geometric least squares means: LSM. least squares means: MR. metabolite to parent molar ratio: PK. pharmacokinetic: PRX. paroxetine: Q. quartile: QD. once daily: 1/2. half-life: t_may. time to reach C_m Concomitant administration of aficamten with paroxetine (strong CYP2D6 inhibitor) increased the AUC_{0-inf} and C_{max} of aficamten by 27% and 20%, respectively

Table 4: Statistical PK comparisons for aficamten administered alone and with fluoxetine

PK parameter ^a (N=16 ^b)	Reference	Test	Test vs Reference ^c
	10 mg AFI	10 mg AFI + 40 mg FLX QD	GLSM Ratio (%) (90% Cl)
UC _{0-t} (ng·h/mL)	2750 (20.0)	3310 (18.7)	121 (116, 125)
JC _{0-inf} (ng·h/mL)	3220 (21.5)	4260 (22.8)	132 (125, 140)
C _{max} (ng/mL)	69.4 (58.5)	104 (55.0)	155 (128, 188)
t _{max} (h)	1.53 (0.99, 2.77)	1.03 (0.88, 1.53)	_
t _{1/2} (h)	74.5 (65.0, 91.2)	95.4 (85.9, 104)	<0.0001d
MR AUC 0-inf	0.73 (21.2)	0.60 (17.6)	81.8 (76.8, 87.1)
MR AUC 0-inf	1.20 (13.7)	1.01 (17.9)	83.7 (78.9, 88.7)

Concomitant administration of aficamten with fluoxetine (strong CYP2D6 and CYP2C19 inhibitor) increased the AUC_{0-inf} and C_{max} of aficamten by 32% and 55%, respectively. The fluoxetine-mediated increase in aficamten exposure was comparable to paroxetine, suggesting only a minor contribution of CYP2C19

aficamten metabolized by P450s

YP enzyme	fm (%) ^a
YP2C9	50
YP3A	26
YP2D6	21
YP2C19	3
nates of the fraction metabolized were refined using	physiologically-based pharmacokinetic modeling.

- Across all cohorts, CK-3834282 and CK-3834283 metabolite ratios (MR AUC_{0-inf}) decreased upon coadministration of aficamten with a CYP inhibitor
- These results confirmed that all evaluated perpetrator drugs acted by altering the systemic CYP-mediated metabolism of aficamten
- The estimated contribution of P450s to the metabolism of aficamten are shown in Table 5

1. D. Xu, et al. American Society for Clinical Pharmacology (ASCPT); 2024;PII-III.

Acknowledgements: Editorial support for the preparation of this poster was provided by Sue Reinwald, PhD, Engage Scientific Solutions, funded by Cytokinetics, Incorporated;

Disclosures: Cytokinetics, Inc. sponsored this research. All authors are employees and

Scan the QR code to obtain a PDF of this poster. No personal information is stored.

CYTOKINETICS[®] and the CYTOKINETICS and C-shaped logo are registered trademarks of Cytokinetics in the U.S. and certain other countries.