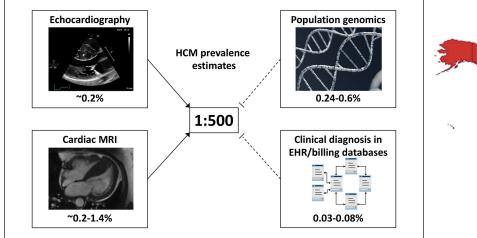
Effect of aficamten treatment on patients with hypertrophic obstructive cardiomyopathy by geographical region

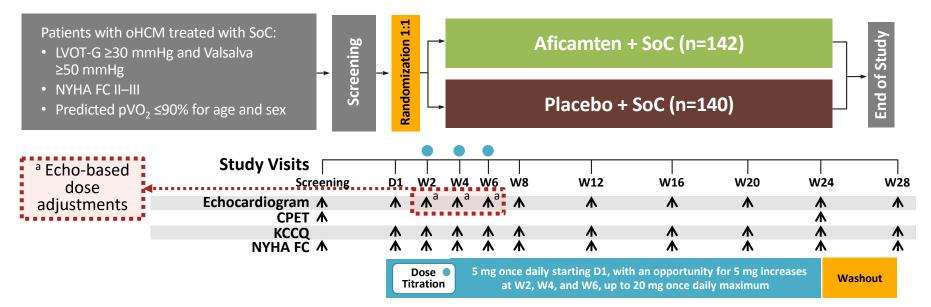
Results from the SEQUOIA-HCM Trial

Caroline J. Coats, MD, PhD, on behalf of the SEQUOIA-HCM Investigators


18th May 2025

Global burden of hypertrophic cardiomyopathy

- HCM is a global disease.
- Access to contemporary treatments for obstructive HCM (myectomy, alcohol septal ablation and implantable cardioverter defibrillators) varies across the world.



EHR, electronic health record; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter defibrillator; MRI, magnetic resonance imaging; oHCM, obstructive hypertrophic cardiomyopathy. Maron MS, et al. J Am Coll Cardiol HF 2018;6(5):376; Massera D, et al. Int J Cardiol 2023;382:64.

SEQUOIA-HCM – Study design

Aficamten is a next-in-class cardiac myosin inhibitor with a half-life of ~3.4 days, a predictable and shallow dose-response relationship, and low liability for drug–drug interaction.

CPET, cardiopulmonary exercise testing; D, day; echo, echocardiogram; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVOT-G, left ventricular outflow tract gradient; NYHA FC, New York Heart Association functional class; oHCM, obstructive hypertrophic cardiomyopathy; pVO₂, peak oxygen uptake; SoC, standard of care; W, week.

Coats CJ, et al. J Am Coll Cardiol HF 2024;12:199-215.

SEQUOIA-HCM: Geographic substudy objectives

Rationale: Geographic variation in patient characteristics and cardiovascular outcomes is well recognised in heart failure clinical trials.

Aim: To describe the impact of aficamten by geographic region in SEQUOIA-HCM.

Specific objectives were to:

- 1. Describe clinical characteristics of patients by geographic region.
- 2. Assess the treatment effects of aficamten by geographic region.
- 3. Assess the dosing and safety profile of aficamten by geographic region.

Regions included: USA (n=94 enrolled at 26 sites), China (n=46 enrolled at 12 sites), and Europe/Israel (n=142 enrolled at 44 sites).

Patient characteristics

Characteristic, n (%), mean ± SD	Europe and Israel n=142	China n=46	North America n=94	<i>P</i> value
Age, years	59.7 ± 12.5	51.8 ± 11.4	61.7 ± 13.2	<0.001
Female sex	54 (38.0)	16 (34.8)	45 (47.9)	0.21
BMI, kg/m²	28.3 ± 3.6	26.1 ± 3.3	28.7 ± 3.9	<0.001
Hypertension	67 (47.2)	17 (37.0)	61 (64.9)	0.003
Diabetes	14 (9.9)	0 (0.0)	9 (9.6)	0.09
Atrial fibrillation (including PAF)	23 (16.2)	1 (2.2)	19 (20.2)	0.019
Family history of HCM	48 (33.8)	8 (17.4)	19 (20.2)	0.021
Time since HCM diagnosis, years	7.1 ± 6.9	2.7 ± 3.2	5.3 ± 4.7	<0.001
ICD, %	22 (15.5)	0 (0.0)	17 (18.1)	0.010
Medication				
Beta-blocker	99 (69.7)	18 (39.1)	56 (59.6)	<0.001
Calcium channel blocker	37 (26.1)	23 (50.0)	37 (39.4)	0.006
Disopyramide	31 (21.8)	0 (0.0)	5 (5.3)	<0.001
No background therapy	15 (10.6)	12 (26.1)	9 (9.6)	0.012

Certain characteristics were more common in Europe and North America than in China, including:

- Older age
- Higher BMI
- Atrial fibrillation
- ICD use

Baseline assessments

Characteristic, n (%), mean ± SD, or median [IQR]	Europe and Israel n=142	China n=46	North America n=94	P value
NYHA FC				<0.001
I	116 (81.7)	43 (93.5)	55 (58.5)	
III/IV	26 (18.3)	3 (6.5)	39 (41.5)	
pVO ₂ , ml/kg/min	18.8 ± 4.5	18.3 ± 4.7	18.2 ± 4.4	0.56
KCCQ-CSS	73.1 ± 18.6	82.4 ± 12.5	73.2 ± 18.6	0.006
NT-proBNP, median [IQR], ng/I	894 [410, 1869]	810 [317, 2252]	702 [284, 1212]	0.17
hs-cTnI, median [IQR], ng/I	13 [8, 27]	18 [6, 56]	10 [7, 20]	0.15
LV ejection fraction, %	75.2 ± 6.1	75.7 ± 4.8	73.7 ± 5.9	0.09
Resting LVOT-G, mmHg	53.3 ± 27.9	68.4 ± 33.0	51.2 ± 28.9	0.003
Valsalva LVOT- G, mmHg	83.7 ± 31.3	90.0 ± 35.8	78.7 ± 31.6	0.14
LV maximal wall thickness, cm	2.1 ± 0.3	2.2 ± 0.3	2.1 ± 0.3	0.06
LA volume index, ml/m ²	42.5 ± 14.9	40.5 ± 11.8	37.5 ± 12.8	0.028

Greater proportions of patients were NYHA class II in Europe and China than in North America.

Mean KCCQ-CSS and resting LVOT-G were higher among patients in China than in Europe or North America.

hs-cTnl, high-sensitivity cardiac troponin I; IQR, interquartile range; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score; LA, left atrial; LV, left ventricular; LVOT-G, left ventricular outflow tract gradient; NT-proBNP, N-terminal pro-hormone natriuretic peptide; NYHA FC, New York Heart Association functional class; pVO₂, peak oxygen uptake.

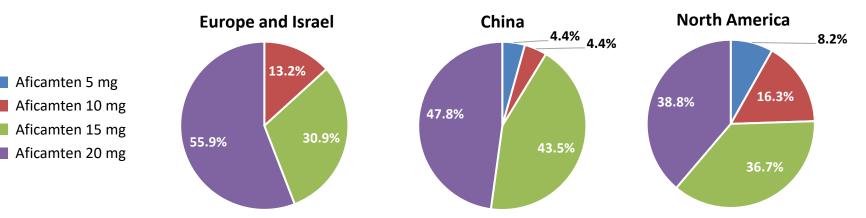
Treatment effects at Week 24

Change from baseline differences between aficamten and placebo by region

Endpoints	Europe and Israel n=142	China n=46	North America n=94	P -interaction
Primary endpoint:				
Change from baseline pVO ₂ by CPET, ml/kg/min	+1.8	+1.8	+1.4	0.88
Secondary endpoints:				
KCCQ-CSS, change from baseline	+9.0	+3.5	+6.3	0.34
Proportion with NYHA ≥1 class improvement	+44.5%	+27.0%	+22.8%	0.18
Valsalva LVOT-G change from baseline, mmHg	-51.8	-59.8	-44.3	0.29
Proportion with Valsalva LVOT-G <30 mmHg	+51.7%	+51.0%	+34.8%	0.22
Change from baseline in total workload during CPET, watts	+7.5	+5.1	+5.5	0.98
Exploratory endpoint:				
Percentage change in NT-proBNP from baseline	-81%	-84%	-77%	0.34

Independent of *geographic region*, treatment with aficamten significantly improved exercise capacity, symptoms, outflow tract gradients, and cardiac biomarkers

7



Differences are shown as the least squares mean difference between groups for the mean change from baseline for primary and secondary endpoints, except for proportions with NYHA ≥1 class improvement and Valsalva LVOT-G <30 mmHg, which are shown as risk differences representing treatment effects. CPET, cardiopulmonary exercise testing; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score; LVOT-G, left ventricular outflow tract gradient; NT-proBNP, N-terminal pro-hormone natriuretic peptide; NYHA, New York Heart Association; pVO₂, peak oxygen uptake.

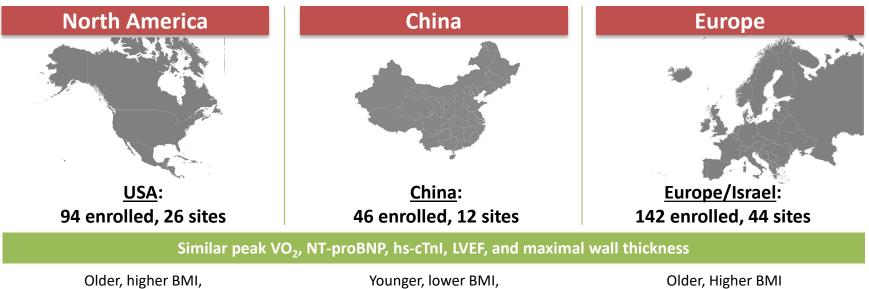
Safety outcomes and dosing

Event, n (%)	Europe and Israel n=142	China n=46	North America n=94
Any serious AE			
Placebo	7 (9.6)	2 (9.1)	4 (8.9)
Aficamten	6 (8.7)	0 (0.0)	2 (4.1)
LVEF <50%			
Placebo	1 (1.4)	0 (0.0)	0 (0.0)
Aficamten	1 (1.4)	1 (4.2)	3 (6.1)

- The incidence of any serious AEs and occurrence of LVEF <50% were low and similar across regions.^a
- Likewise, the distribution of doses achieved after titration was similar across regions.^b

^aValues for serious AEs and LVEF <50% are number (%) in each treatment arm.

^bPercentages of patients at a given aficamten dose level were calculated using the total number of patients who received aficamten and had available dosing data (Europe and Israel: n=68; China: n=23; North America: n=49).


AE, adverse event during 24 weeks of treatment; LVEF, left ventricular ejection fraction.

Conclusions

- In SEQUOIA-HCM, aficamten treatment improved exercise capacity, symptoms, hemodynamics, and cardiac biomarkers independent of geographical region, despite differences in some baseline characteristics.
- Safety and dosing were similar across geographical regions.
- Clinical trials offer an opportunity to report a more global perspective of patient characteristics and how regional variation may contribute to therapeutic efficacy and safety.

SEQUOIA-HCM trial participants by geographic location

BB > CCB, ICDs, lower KCCQ, NYHA FC III, hypertension, diabetes, AF Younger, lower BMI, CCB > BB, no ICDs, higher KCCQ; NYHA FC II, coronary artery disease Older, Higher BMI BB > CCB, disopyramide, ICDs, lower KCCQ, NYHA FC II, hypertension, diabetes, AF

Consistent dosing, safety and treatment effects of aficamten in obstructive hypertrophic cardiomyopathy

AF, atrial fibrillation; BB, beta-blocker; BMI, body mass index; CCB, calcium channel blocker; hs-cTnl, high-sensitivity cardiac troponin I; ICD, implantable cardioverter defibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-hormone natriuretic peptide; NYHA FC, New York Heart Association functional class; VO₂, oxygen uptake.

Acknowledgements

The SEQUOIA-HCM trial is funded by Cytokinetics, Incorporated.

We thank the following individuals for their contributions to this clinical trial:

- Participants and their families
- Investigators and study site staff
- Data Monitoring Committee members
- Steering Committee members: Caroline J. Coats, Theodore P. Abraham, Michael Arad, Nuno Cardim, Lubna Choudhury, Milind Desai, Hans-Dirk Düngen, Pablo Garcia-Pavia, Albert A. Hagège, Carolyn Y. Ho, James L. Januzzi, Christopher Kramer, Raymond Kwong, Matthew M.Y. Lee, Gregory D. Lewis, Chang-Sheng Ma, Martin S. Maron, Ahmad Masri, Michelle Michels, Iacopo Olivotto, Artur Oreziak, Anjali T. Owens, Sara Saberi, Scott D. Solomon, John A. Spertus, Marion van Sinttruije, Jacob Tfelt-Hansen, Josef Veselka, and Hugh C. Watkins
- Editorial support for the preparation of this presentation was provided by Dave Sunter, PhD, and Elyse Smith, PhD, CMPP of Engage Scientific Solutions, Inc., and was funded by Cytokinetics, Incorporated.

