

IMPROVEMENT IN ECHO MEASURES OF DIASTOLIC FUNCTION REFLECTS IMPROVED EXERCISE PERFORMANCE IN OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY: INSIGHTS FROM THE SEQUOIA-HCM TRIAL

Henri Lu¹, Nicole Bart, Brian L. Claggett, Theodore Abraham, Caroline J. Coats, Matthew M. Y. Lee, Martin S. Maron, Iacopo Olivotto, Daniel L. Jacoby, Ahmad Masri, Stephen B. Heitner, Stuart Kupfer, Fady I. Malik, Amy Wohltman, Gregory D. Lewis, Scott D. Solomon, Sheila M. Hegde

Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston

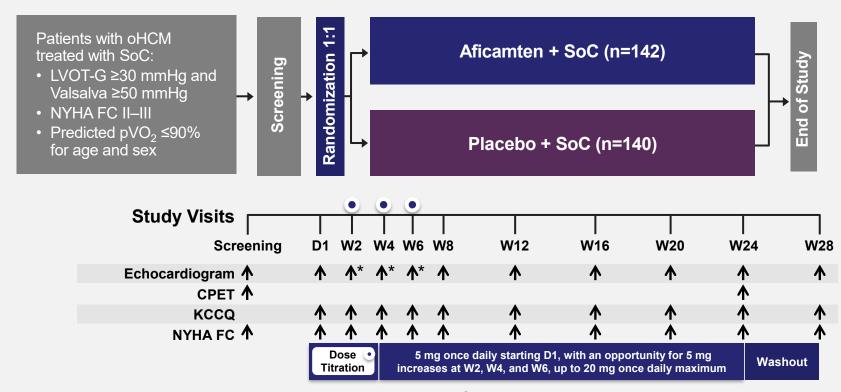
FINANCIAL DISCLOSURE

Presenter: Henri Lu

• Dr. Lu has received research grant /travel support or served on advisory boards for Bayer, AstraZeneca, Boehringer Ingelheim, Cytokinetics, Zoll and Abbott.

BACKGROUND/OBJECTIVE

- A key feature of obstructive hypertrophic cardiomyopathy (oHCM) is impaired exercise capacity (impacts quality of life and is a determinant of clinical outcomes).
- The mechanistic link between echo structural and functional changes, and CPET metrics of exercise capacity remains poorly defined.
- Understanding the mechanisms of exercise intolerance in oHCM remains essential to optimizing patient care.


This study assesses the relationships between changes in echo parameters and CPET metrics in patients with oHCM from the SEQUOIA-HCM trial, independent of treatment arm (aficamten or placebo).

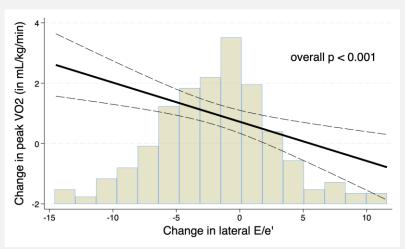
CPET metrics included:

- pVO₂
- VE/VCO₂
- Composite peak & submaximal exercise (CPSE) Score
 - ➤ Mean of standardized changes in peak VO₂ and inverse VE/VCO₂ slope (higher = better performance)

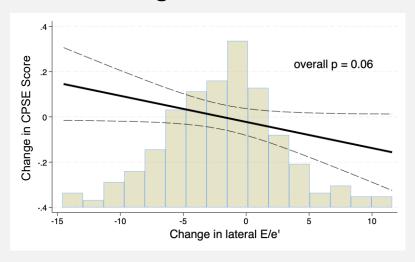
METHODS: SEQUOIA-HCM STUDY DESIGN

Echocardiographic measurements were performed by a core imaging laboratory.

RESULTS: BASELINE CHARACTERISTICS


Clinical Characteristics	N=282
Age, years	59.1 ± 12.9
Male sex	167 (59)
Race	
Asian	54 (19)
Black or African American	3 (1)
White	223 (79)
Hypertension	145 (51)
Pathogenic sarcomere variant	49 (17)
Atrial fibrillation	44 (16)
Diabetes	23 (8)
Beta-blocker	173 (61)
Calcium channel blocker	97 (34)
KCCQ-CSS	75 ± 18
NYHA Class III/IV	68 (24)
NT-proBNP, pg/mL	788 [346, 1699]

Echo Characteristics	
LVOT-G, rest, mmHg	55 ± 30
LVOT-G, Valsalva, mmHg	83 ± 32
Interventricular septal wall, cm	1.9 ± 0.3
Inferolateral wall, cm	1.3 ± 0.3
LVMi, g/m²	132 ± 34
LVEDVi, mL/m ²	36 ± 9
LVEF, %	75 ± 6
Abs. LVGLS, %	15.4 ± 3.2
TAPSE, cm	2.1 ± 0.4
RV S' vel, cm/sec	13 ± 3
LAVi, mL/m ²	41 ± 14
Peak E-wave vel, cm/s	85 ± 29
Lateral E/e'	16 ± 8
CPET Characteristics	
CPSE Score	0.0 ± 0.8
Peak VO ₂ , mL/kg/min	18.5 ± 4.5
VE/VCO ₂ slope	33.0 ± 6.1


Abs. LVGLS = Absolute Left Ventricular Global Longitudinal Strain; CPET = Cardiopulmonary Exercise Testing; CPSE = Composite peak & submaximal exercise; KCCQ-CSS = Kansas City Cardiomyopathy Questionnaire—Clinical Summary Score; LAVi = Left Atrial Volume Index; LVEDVi = Left Ventricular End-Diastolic Volume Index; LVEF = Left Ventricular Ejection Fraction; LVMi = Left Ventricular Mass Index; LVOTg = Left Ventricular Outflow Tract Gradient; NT-proBNP = N-terminal pro—B-type Natriuretic Peptide; NYHA = New York Heart Association; RV S' vel = Right Ventricular Systolic (S') Velocity; TAPSE = Tricuspid Annular Plane Systolic Excursion; VE/VCO₂ slope = Minute Ventilation to Carbon Dioxide Production Slope; VO₂ = Oxygen Uptake.

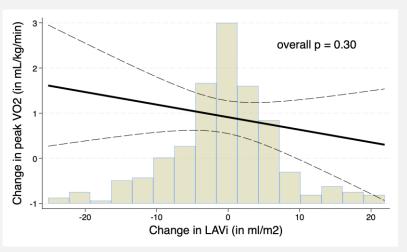
RESULTS: CHANGE IN LATERAL E/E'

vs Change in peak VO₂

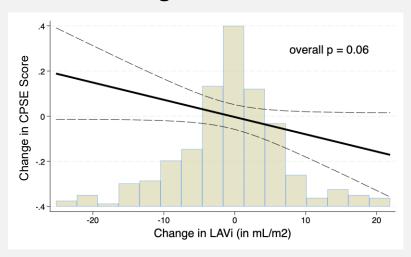
vs Change in CPSE Score

CPSE Score*:

Represents the mean of standardized changes in peak VO_2 and inverse VE/VCO_2 slope (higher values = better performance)


Panels demonstrate multivariable linear regression adjusted for baseline lateral E/e' and CPET values, and treatment arm.

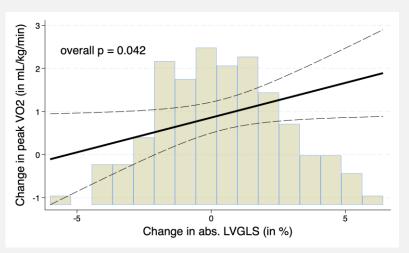
 VE/VCO_2 slope = Minute Ventilation to Carbon Dioxide Production Slope; VO_2 = Oxygen Uptake.



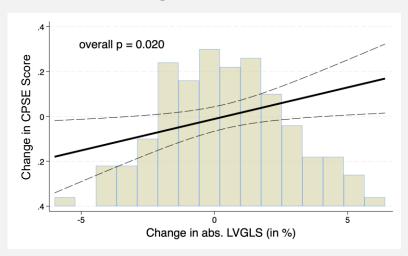
RESULTS: CHANGE IN LA VOLUME INDEX

vs Change in peak VO₂

vs Change in CPSE Score


Panels demonstrate multivariable linear regression adjusted for baseline lateral E/e' and CPET values, and treatment arm.

LAVi = Left Atrial Volume Index; VO₂ = Oxygen Uptake.



RESULTS: CHANGE IN ABSOLUTE LV GLS

vs Change in peak VO₂

vs Change in CPSE Score

GLS presented as absolute values; lower values indicate impaired function

Panels demonstrate multivariable linear regression adjusted for baseline lateral E/e' and CPET values, and treatment arm.

Abs. LVGLS = Absolute Left Ventricular Global Longitudinal Strain; VO_2 = Oxygen Uptake.

RESULTS

 No significant association was found between changes in CPET metrics and changes in other echo parameters, after adjusting for treatment (LVOT-G at rest and Valsalva, IVS wall thickness, IL wall thickness, LVMi, LVEDVi, LVEF, TAPSE, RV S' vel, peak E-wave vel).

LIMITATIONS

 Echo assessments were performed at rest and may not fully capture exercise hemodynamics.

CONCLUSIONS

In this secondary analysis of SEQUOIA-HCM, including 282 patients with echo and CPET follow-up:

- Improvement in myocardial mechanics (GLS) and E/e' were both associated with enhanced exercise capacity after 24 weeks, independent of treatment.
- Changes in measures of diastolic function correlated with changes in exercise performance, supporting echo parameters as useful surrogate markers for exercise tolerance.
- These findings underscore diastolic dysfunction as a central pathophysiologic feature of oHCM.

ACKNOWLEDGEMENTS

The SEQUOIA-HCM trial is funded by Cytokinetics, Incorporated.

We thank the following individuals for their contributions to this clinical trial:

- Participants and their families.
- · Investigators and study site staff
- Data Monitoring Committee members
- Brigham and Women's Hospital Cardiac Imaging Core Lab
- Steering Committee Members: Martin S. Maron, Theodore P. Abraham, Michael Arad, Nuno Cardim, Lubna Choudhury, Caroline J. Coats, Milind Desai, Hans-Dirk Düngen, Pablo Garcia-Pavia, Albert A. Hagège, Carolyn Y. Ho, James L. Januzzi, Christopher Kramer, Raymond Kwong, Matthew M.Y. Lee, Gregory D. Lewis, Chang-Sheng Ma, Ahmad Masri, Michelle Michels, Iacopo Olivotto, Artur Oreziak, Anjali T. Owens, Sara Saberi, Scott D. Solomon, John A. Spertus, Marion van Sinttruije, Jacob Tfelt-Hansen, Josef Veselka, and Hugh C. Watkins

THANK YOU

#AHA25

